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Preface

There has been lately a gigantic interest worldwide in the commodities space, energy in
particular, as evidenced by the number of press editorials that are published on the subject.
Commodity prices have been experiencing an unprecedented rise in the last few years and
there is no sign, at the date of writing (July 2008), that we may revert to the levels of 2005 or
2006, not to mention those prevailing in the early 2000s which seem to belong to prehistory.
Uranium prices went from $7 per pound in 2003 to $90, then $100 in early 2008, with 442
nuclear reactors in the world needing 180 million pounds of uranium, a number that is much
larger than the current production. The LNG (Liquid Natural Gas) market is boiling at minus
160 Celsius degrees; Korean shipyards are delivering new carriers with increased capacity
and, interestingly, some of the LNG tankers start being used as floating storage (hence,
embedding a valuable optionality). Demand for metals, energy and cereals from Brazil and
Russia, two of the fastest- growing economies, is undoubtedly pushing prices up, together
with the one coming from the heavily populated India and China. As an example, between
2001 and 2005, China’s demand for copper, aluminium and iron respectively increased by
78 %, 85 % and 92 %. As part of the expansion of the commodities universe, azuki beans,
which used to be ignored in many parts of the world, are now a component of a number
of commodity indexes into which gigantic amounts of money have poured lately. Energy
prices, e.g., crude oil and coal, have witnessed an amazing increase these last two years,
with a greater public awareness of ‘“Peak Oil” or at least, the exhaustible nature of fossil
energy. The West Texas Intermediate (WTI) crude oil, that had undergone a respite in price
increase during the year 2006, resumed in 2007 its irresistible ascent to go over the symbolic
threshold of $100 per barrel in early 2008. It went above $140/bbl in June and July, resulting
in prices multiplied by more than 500 percent in less than four years, with — among other
reasons — supply disruptions in Nigeria, a structural decline in production in Mexico and
other countries.

Call options on crude oil with strikes of $100 or more were the subject of great attention
when they appeared in New York in summer 2006. By May 2008, there were 21,000
outstanding contracts for the NYMEX December 2008 call options with a strike of $200/bbl.
Their volume has more than quadrupled since the beginning of 2008, signalling that a number
of market participants are betting that crude oil prices would hit $200 before the end of
2008, a possibility first mentioned by the US bank Goldman Sachs, a major player in the oil
market. As another sign of changing times, US heating oil futures trading was interrupted
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for a short while on the electronic platform CME Globex, after prices struck the fluctuation
limit of 25 cents, or 6.82 percent. This “limit up” move triggered the halt in the electronic
trading of all energy contracts, including WTI crude oil and RBOB gasoline. This was the
first shutdown since electronic trading began in 2006 and created confusion and concern
among traders.

Since commodities are essentially denominated in dollars, the weakness of the “numéraire”
currency has often been cited as a major explanation for the rise of commodity prices. Still,
in constant dollars, average crude oil prices rose by 124 percent over the period 2002 — 2006;
and the recent increase has been even steeper. At the beginning of April 2008, the secre-
tary of the Organization of Petroleum Exporting Countries, which pumps 40 % of the oil
world supplies, rejected requests for an increase in the cartel’s crude output, saying that
non-fundamental factors were to blame for current high prices. In fact, OPEC maintained
its output at 29.67 million barrels per day at its last meeting in March 2008 and warned
that there would be little OPEC could do if prices hit $200. With a forward looking per-
spective, the entire WTI crude forward curve has been trading over the level of $105 since
the beginning of April 2008, with the long dated contract for December 2016 trading above
$110, indicating a market consensus over $100 for a while.

The same tight market conditions across the spectrum of the three commodity classes —
energy, metals and Agriculturals — are also unlikely to drastically improve in the near future,
with land itself becoming rare and water insufficient, disruptions occurring in South African
mines because of electricity shortages, geopolitical issues in a number of countries producing
commodities and a world surge in demand. We can observe that these elements illuminate a
property that did not used to be true, namely that the three commodity sub-asset classes are
increasingly correlated, a property that we can certainly view as novel in the commodity
markets. Hence, energy companies and agrifood business now need, like bankers and port-
folio managers, to follow what is happening in the space of all commodities while deciding
on the acquisition of new physical assets such as power plants, gas storage facilities, alu-
minium smelters or grain elevators. This is illustrated by the example of the private equity
fund KKR acquiring the biggest utility in Texas.

One should remember that the history of commodities has been filled with booms, busts,
seasonal volatility, weather events, geopolitical tensions and occasional attempts to “‘corner”
the market, features that were reasonably acting as a deterrent for new entrants. Moreover,
the physical constraints of delivery and storage make spot commodity trading difficult or
impossible; transactions on commodity futures Exchanges can only be performed through
a broker who is a member of the Exchange (hence, the gigantic success of the recently
introduced ETFs (Exchange-Traded Futures), that are accessible to individual investors. All
participating agents must keep in mind, however, that volatility swings reflect not only sup-
ply and demand concerns, but also the fact that these markets are sometimes dominated by
large players, are often opaque, always directed by the long lead-time between a production
decision and its actual viability. Trading volumes have also widely fluctuated over time:
during the high inflation era of the 1970s, commodity futures trading exploded and the real
estate sector boomed since bonds and stocks were generating a real return close to zero over
a decade. The end of the 1970s commodity boom can be identified with the crash in 1980 of
precious metals prices, when the famous squeeze of the silver market by the Hunt Brothers
(who were holding at some point an estimated 50 percent of the global deliverable supply
of silver) failed. Afterwards, there was a long period of nearly 20 years of stagnation in
commodity prices, that some experts attribute to supply fundamentals and lower inflation.
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Over the decades, commodities have essentially captured the attention of famous
economists such as Keynes, Kaldor or Working and industrial organization researchers.
They have generally been under-studied and certainly under-represented in finance liter-
ature. This book aims at filling part of this vacuum, and I express my gratitude to the
experts, academics and practitioners, who agreed to contribute a chapter. Through the vari-
ous chapters, a number of economic, geopolitical and modelling issues, all fascinating, were
analyzed in a superb way.

Hélyette Geman
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1
. Structural Models of Commodity Prices |

Craig Pirrong

1.1 INTRODUCTION

The transparency of fundamentals in commodity markets (in contrast to equity or currency
markets, for instance) holds out the promise of devising structural models of commodity
price behavior that can illuminate the underlying factors that drive these prices, and which
perhaps can be used to value contingent claims on commodities. There has been much
progress on these models in recent years, but the empirical data show that real-world com-
modity price behavior is far richer than that predicted by the current generation of models,
and that except for non-storable commodities, structural models currently cannot be used to
price derivatives. The models and empirical evidence do, however, point out the deficien-
cies in reduced form commodity derivative pricing models, and suggest how reduced form
models must be modified to represent commodity price dynamics more realistically. They
also suggest additional factors that may be added to the models (at substantial computational
cost) to improve their realism.

This chapter sketches out the current state of fundamental models of commodity markets.
It starts with a taxonomy of commodities, and then proceeds to discuss models for storable
and non-storable commodities, and structural models for each.

1.2 A COMMODITY TAXONOMY

Although the catchall term “commodity” is widely applied to anything that is not a true
asset, it conceals tremendous diversity, diversity that has material impacts on price behavior
and modeling.

The most basic divide among commodities is between those that are storable, and those
that are not. The most important non-storable commodity is electricity (although hydro
generation does add an element of storability in some electricity markets). Weather is obvi-
ously not storable — and it is increasingly becoming an important underlying in commodity
derivatives trading.

Most other commodities are storable (at some cost), but there is considerable heterogeneity
among goods in this category. Some are continuously produced and consumed, and are not
subject to significant seasonality in demand; industrial metals such as copper or aluminum
fall into this category. Some are continuously produced and consumed, but exhibit substantial
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seasonality in demand. Heating oil, natural gas, and gasoline are prime examples of this
type of commodity. Other commodities are produced seasonally, but there is also variation
within the category of seasonally produced commodities. Grains and oilseeds are produced
seasonally, but their production is relatively flexible because a major input — land — is quite
flexible; there is a possibility of growing corn on a piece of land one year and soybeans
the next, and an adverse natural event (such as a freeze) may damage one crop, but does
not impair the future productivity of land. In contrast, tree crops such as cocoa or coffee or
oranges are seasonally produced, but utilize specialized, durable, and inflexible inputs (the
trees) and damage to these inputs can have consequences for productivity that last beyond
a single crop year.

Fundamentals-based models must take these variations across commodities into account.
Moreover, this cross sectional variation has empirical implications that can be exploited to
test fundamental-based structural models.

1.3 FUNDAMENTAL MODELS FOR STORABLE COMMODITIES

In a nutshell, a fundamental model derives commodity prices as the equilibrium result of
basic supply and demand factors. In contrast, a reduced form model merely specifies the
dynamics of a commodity price (or a forward curve of commodity prices), usually in the
form of a stochastic differential equation.

The Theory of Storage is the canonical fundamental commodity price model. Early
versions of the theory of storage (due to Kaldor (1939) and Working (1949)) posit that com-
modity inventories generate a stream of benefits — a convenience yield — and that marginal
convenience yield varies inversely with the level of inventories. This theory was devised
to explain the fact that the forward prices of storable commodities are routinely below the
spot price plus the costs of holding inventory until contract expiration. However, it is ad
hoc and does not provide an equilibrium model of the determinants of the marginal benefit
of inventory holding.

A more solidly grounded Theory of Storage is embodied in the rational expectations
model of Scheinkman and Schectman (1983). In this model, a random amount of a com-
modity is produced every period, and competitive agents allocate production between current
consumption and storage. The stored commodity can be consumed in the future. In a com-
petitive market, the equilibrium storage decision maximizes the discounted expected utility
of the representative agent. This decision depends on two state variables: current output
and current inventories. In brief, agents add to inventories when production is higher than
average (especially when current stocks are low) and consume inventory when production
is lower than average (especially when stocks are high).

The constraint that storage cannot be negative has important pricing implications. When
demand is low (and/or stocks are high) it is optimal for agents to hold inventory. In a
competitive market, forward prices must cover the costs of storage in order to induce the
optimal decision in these conditions, and the forward price will equal the spot price plus the
cost of holding inventory to the next production date. When demand is very high and stocks
are low, however, it is optimal to consume all inventories. Since storage links spot and
futures prices, such a “stockout” disconnects these prices. Moreover, when it is not efficient
to store, forward prices should punish storage by failing to cover by the costs of holding
inventory. Indeed, if demand is sufficiently high, the equilibrium forward price during a
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stockout is less than the spot price. This is sometimes referred to as a “backwardation”
or an inversion. Thus, in contrast to the ad hoc convenience yield theory, this version
of the theory of storage provides a fundamentals-based, structural model of forward price
structures.

As is common with rational expectations models, Scheinkman-Schectman requires a
numerical solution of a dynamic programming problem. That is, it cannot be solved in closed
form. However, since the problem is typically a contraction mapping, it is readily amenable
to solution using standard recursive techniques. In the original Scheinkman-Schectman
model, the commodity is produced every period, and the production shocks are IID. Solu-
tions to the dynamic program are computationally cheap when there is a single independent
and identically distributed (IID) demand shock. See Williams and Wright (1991) for detailed
descriptions of the relevant numerical techniques.

Such a model is appropriate for a continuously produced commodity with IID demand
shocks. The model implies that prices should be autocorrelated even when demand shocks
are IID because storage links prices over time. When demand is low today, for instance,
more of the commodity is stored, increasing future supply and thereby depressing prices in
the future.

Deaton and Laroque (1992) perform empirical tests on the storage model with IID
demand shocks using annual data on a variety of commodities encompassing all types
of storables, including tree crops, grains, and continuously produced goods such as copper.
Deaton-Laroque find that real-world commodity prices exhibit far more persistence than
the storage model can generate. Storage in the presence of IID demand shocks can pro-
duce autocorrelations on the order of 20 %, far below the 90 % that Deaton-Laroque find.
In later emprical work, these authors (Deaton-Laroque, 1996) attribute virtually all of the
persistence in commodity prices to autocorrelation in demand shocks.

The use of annual data and the homogeneous treatment of these commodities are prob-
lematic given that the frequency of the storage decision is less than a year, and varies across
these disparate commodity types. Moreover, this approach disregards an important source
of valuable price information: daily data on futures prices for various maturities that are
available for a wide variety of commodities.

Exploitation of high frequency futures price data, and of the cross-sectional variation in
commodity characteristics, requires use of more sophisticated models. Pirrong (2006, 2007)
extends the basic Scheinkman-Schectman framework to include multiple, autocorrelated
demand shocks for a commodity in which the frequency of the storage decision is the same
as the frequency of production.! This is appropriate for continuously produced commodities
such as copper. Solution of such a model is substantially more computationally demanding
(due to the curse of dimensionality common to dynamic programming models), but provides
more realistic characterizations of storage economics, and its implications for the behavior
of commodity price structures. Moreover, given the solution of the storage problem, it is
possible to solve partial differential equations to determine the price of any forward contract
with a maturity greater than the frequency of production.

This more complicated model can generate price behavior that mimics some of the features
documented for industrial metals by Ng-Pirrong (1994). Specifically, in this model, spot
prices are more volatile when the market is in backwardation (a signal of tight supply and

! Routledge, Seppi, and Spatt (2000) and Deaton-Laroque (1996) also model commodity prices when demand is
autocorrelated. Pirrong permits multiple demand shocks with differing persistence.
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demand conditions), and the correlation between spot prices and forward prices (e.g., a
three-month forward price) is near 1 when stocks are high and the market is at full carry,
and is below 1 and decreasing in the amount of backwardation (and in inventories) when the
market is in backwardation. These basic behaviors are documented in Ng-Pirrong, but the
more complex model calibrated to match the behavior of prices in the copper market cannot
duplicate other aspects of the Ng-Pirrong empirical dynamics. For instance, in Ng-Pirrong
three-month forward prices are substantially more volatile (though less volatile than spot
prices) when the market is in backwardation than when it is not; in the augmented storage
model, in contrast, three-month forward price volatilities vary much more weakly with
backwardation (and stocks). Moreover, the augmented storage model does a poor job at
explaining the dynamics of more distant forward prices, such as 15 or 27-month copper
prices. Even if one of the demand shocks is highly persistent (and nearly integrated), in
the storage model the long maturity forward prices exhibit virtually no variability when
the market is in backwardation, whereas real-world 15 and 27-month copper prices exhibit
substantial volatility. Over such a long period, a current demand shock (even if highly
persistent) has little power to forecast demand in the distant future, so in the model distant
forward prices do not vary in response to demand shocks.

Other extensions of the model can capture market price behaviors that are otherwise
puzzling. For instance, in 2005-2006 many market commentators, and even a committee
report of the United States Senate, declared that the simultaneous increase in energy prices
and inventories observed during that period was symptomatic of a disconnection between
market fundamentals and prices, driven by speculative excess. Pirrong (2008) modifies the
basic storage model to include stochastic volatility in the net demand shock to explain this
seemingly anomalous behavior.

The intuition is quite straightforward. Inventory is largely held to smooth the impact
of fundamental shocks. If these shocks become more volatile, it is optimal to hold larger
inventories. When market participants perceive that fundamental volatility has increased,
they rationally increase inventories. This requires a reduction in consumption and, con-
comittantly, an increase in prices. Hence, the model predicts simultaneous increases in
inventories and prices during periods of heightened risks; since the risks of hurricanes and
geopolitically driven disruptions in energy production quite plausibly increased beginning
in late-2005 (think Hurricanes Rita and Katrina; the Lebanon War; Iraq; turmoil in Nigeria,
Venezuela, and other energy-producing regions), the model can explain the inventory and
price movements that baffled so many market analysts.

Despite the modest empirical successes of the augmented storage model, empirical work
that exploits the diversity of commodities points out difficulties with the received rational
expectations version of the theory of storage. Specifically, Pirrong (1999), Osborne (2004),
and Chambers and Bailey (1996) model seasonal commodities. In these models, storage
decisions occur more frequently than production (as is realistic). Moreover (again realisti-
cally), agents receive information about the size of the future crop prior to harvest. In this
model, the state variables are the current demand shock, current inventories, and information
about the size of the next harvest.

This model predicts that (a) well prior to the harvest, spot prices (‘“old crop” prices) should
exhibit little correlation with “new crop” futures prices (i.e., futures with delivery dates
immediately following the harvest), and (b) information about the size of the harvest should
have little impact on spot prices but a big impact on new crop prices. These predictions
obtain regardless of whether demand shocks are highly persistent. The intuition behind these
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results is straightforward. Except under highly unusual circumstances (e.g., a large crop at
the previous harvest and low demand, leading to high current inventories, combined with
a forecast of an extremely short upcoming crop), agents seldom find it efficient to carry
positive inventory into the new harvest: why carry supplies from when they are relatively
scarce (right before the harvest), to when they are relatively abundant (immediately following
the harvest)? Thus, storage cannot link “old crop” spot prices and new crop futures prices,
and information that relates to the size of the new crop is largely immaterial to the price of
the old crop, as it affects neither the demand for the old crop (which is driven by demand
up to the time of the harvest) nor its supply (which was established at the last harvest and
subsequent storage decisions).

This model predicts the differential behavior of new crop and old crop prices even if, as
Deaton-Laroque posit, demand is highly autocorrelated. Thus, examining seasonals prices
at weekly (rather than annual) frequency can help determine whether high demand autocor-
relation is indeed the key factor in explaining the persistence of commodity price shocks.

In reality, however, there is a high correlation (typically between 90 % or higher) between
old crop and new crop corn, wheat, cotton, and soybean futures prices, and both old crop
and new crop prices respond by about the same amount in the same direction to official
forecasts of crop size. Thus, neither storage nor high demand autocorrelation can explain the
behavior of seasonal commodity futures prices. This raises doubts about the reliability of the
storage model. Pirrong (1999) discusses some possible factors that can explain the evident
intertemporal connections between old crop and new crop prices, including intertemporal
substitution (ruled out in the basic storage model) and final goods production (e.g., soybeans
are used to produce oil and meal, rather than consumed directly as the basic storage model
assumes). The former explanation is somewhat ad hoc and difficult to test. The latter is con-
ceptually rigorous, but increases the dimensionality of the dynamic programming problem,
because it is necessary to add a state variable (final goods inventory) and solve additional
equilibrium conditions (one each for the raw and final good markets). At present, the curse
of dimensionality precludes sufficiently timely solution of the problem to permit rigorous
empirical testing.

In sum, fundamentals-based structural rational expectations models of storable commodi-
ties shed some light on the behavior of commodity prices, commodity price forward curves,
and commodity price dynamics, but it is clear that these models are missing important fea-
tures. The non-negativity constraint on storage that plays a central role in this type of model
can shed light in a rigorous, equilibrium-based way on the reasons that (a) futures curves
sometimes are in backwardation, (b) commodity price volatilities and correlations are time
varying, and (c) volatilities and correlations covary with inventories and the slope of the
forward curve. However, this type of model fails miserably in explaining why old crop and
new crop futures prices behave so similarly. Moreover, although it can closely mimic the
behavior of spot prices (namely the evolution of spot price volatility over time), its ability
to capture the dynamics of forward prices degrades rapidly with time to maturity. This last
feature may reflect the fact that the model takes certain factors (namely productive capacity)
as fixed, whereas in reality agents can invest in new capacity. The curse of dimensionality
again sharply constrains our current ability to investigate this possibility.

The basic storage model is clearly not ready for derivatives pricing prime time, due both
to its empirical deficiencies, and the curse of dimensionality. However, it does shed serious
doubts on the reasonableness of received reduced form models used to price commodity
derivatives. These models typically assume constant volatilities, and for curve sensitive
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products (such as spread options or swaptions), constant correlations. The storage model,
which at least captures some important aspects of commodity price determination, shows
clearly that these assumptions are dubious (as does much empirical evidence).

1.4 NON-STORABLE COMMODITIES

Life is far easier when studying non-storable commodities, such as electricity, because
the lack of storability makes it unnecessary to solve recursively a dynamic programming
problem to determine the efficient (and competitive equilibrium) allocation of resources, and
hence to determine the equilibrium evolution of prices. For a true non-storable, every instant
of time is distinct from every other instant, and intertemporal connections only arise due
to persistence in demand or supply shocks. If these shocks are Markovian, an assumption
that does not do too much violence to reality, it is a straightforward exercise to determine
the non-storables’ spot price as a function of current supply and demand fundamentals, and
given specification of the dynamics of these fundamentals, to characterize the dynamics of
the spot price.

This approach has been applied most frequently and successfully to the study of electricity
markets by Eydeland and Geman (1998), Pirrong and Jermakyan (1999, 2008), and Eydeland
and Wolyniec (2002). The basic approach in this research is to posit that the spot price of
electricity depends on a small number of drivers, notably load (the demand for electricity),
available capacity, and a fuel price (or a set of fuel prices). Each of these drivers evolves in a
Markovian way. Moreover, especially when one considers load, an abundance of data makes
it straightforward to determine empirically these dynamics. More specifically, the relevant
supply curve of electricity (the relation between the spot price and load, conditional on
the fuel price) is flat for low levels of load, but increases steeply as load nears available
capacity. This supply curve implies that the dynamics of prices are time varying. When load
is low, prices are low and exhibit relatively little variability, but when load is near capacity,
prices can “spike” and exhibit extreme variability.

Since (a) a relatively small set of well-behaved, observable factors explains a substantial
fraction of the variability in power prices, and (b) no solution of a dynamic programming
problem is necessary to determine the relations between the fundamental state variables and
spot prices, for non-storables it is possible to use a fundamentals-based model to price deriva-
tives. Both Eydeland-Wolyniec and Pirrong-Jermakyan do just that, although in slightly
different ways. The key nettle that must be grasped in doing so is that the underlying state
variables are not traded assets, and hence the market is incomplete.2 Thus, any derivatives
price depends on a market price of risk function that must be inferred from the prices of
traded claims. This fact is emphasized explicitly in Pirrong-Jermakyan, who use inverse
techniques to estimate the market price of risk, but it is implicit in the Eydeland-Wolyniec
approach as well, and as a result their calibration techniques effectively determine model
parameters in the equivalent pricing measure.

The assumption of non-storability for electricity is quite apt for some markets, such as
Texas, that are almost strictly fossil-fueled. The assumption is less realistic for other markets,
such as Scandinavia, where hydro power is central; although electricity cannot be stored,
water can be, and hence optimization in a hydro market requires solution of a dynamic

2 Since electricity is not storable, and hence cannot be a proper asset, this problem cannot be avoided by going to
a reduced form model that specifies the dynamics of the spot price.
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programming problem. Non-storability is clearly apposite for other “commodities”, most
notably weather, that are definitely not storable.

The fundamentals-based models of non-storable prices are far preferable to reduced form
models, particularly when pricing derivatives. Non-storables markets are inherently incom-
plete, so both structural and reduced form models must confront the problem of determining
a market price of risk. Moreover, non-storability results in extreme non-linearities — such
as large spikes in power prices — that are very difficult to capture in reduced form mod-
els, but which are a natural feature of well-specified fundamental models because these
non-linearities are a direct consequence of fundamental supply and demand factors. Reduced
form models also face difficulties in addressing the seasonality in many non-storables,
whereas this is not a problem for the structural models. Finally, fundamental models can
more readily handle the pricing of contingent claims with payoffs that depend on multiple
factors (e.g., spark spread options, whose payoffs depend on load and fuel prices) because
these factors are built into the pricing model, whereas multiple reduced form models must
be bolted together to price these claims.

1.5 SUMMARY

Structural models of commodity price behavior have improved our understanding of com-
modity price dynamics, but for storable commodities there is still a yawning gap between
theory and evidence. The modern Theory of Storage has shown how inventory decisions
in competitive markets subject to random demand shocks can influence the shape of com-
modity forward curves. However, this theory cannot mimic the richness of commodity price
behavior, especially for seasonal commodities and for long-dated forward contracts. These
empirical deficiencies and the curse of dimensionality hamper the utility of these models as
derivative pricing tools. In contrast, structural models of non-storables’ prices can capture
salient features of non-storables’ prices, and with sufficiently sophisticated techniques for
extracting information about market risk prices from the prices of traded claims, can be
used to price and hedge non-storable commodity contingent claims.
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2
Forward Curve Modelling

in Commodity Markets

Svetlana Borovkova and Hélyette Geman

2.1 INTRODUCTION

Commodity markets have been buoyant for the last few years and commodity spot prices
continue (at the time of writing) to reach new record highs, driven by a strong world demand
and a tight supply, very sensitive to political or weather events. Moreover, for more than
a century, forward markets have been the main place of commodity trading as they allow
investors to avoid the hurdles of physical delivery while getting the desired exposure to
changes in commodity prices. Most examples in this chapter dedicated to the fundamental
problem of forward curve modelling will be investigated in the setting of strategic energy
commodities such as crude oil or natural gas. But the methodology identically applies
to other commodity classes, either seasonal such as agriculturals or non-seasonal such as
metals.

First we recall some elementary definitions around forward and futures contracts. Forward
contracts are traded over-the-counter between two parties and the grade of oil, delivery
point, exact amount and exact delivery date are specified at the time of writing the contract.
In this respect they are different from futures contracts, which are standardized in terms of
the grade, amount, delivery date and location. Energy futures are traded on exchanges such
as the InterContinental Exchange (ICE) and New York Mercantile Exchange (NYMEX).
For instance, most of the trading activity in oil markets takes place in futures and forward
contracts, where the volume of trades is almost ten times higher than in the spot market.

Throughout the chapter, we will denote the futures or forward price on day ¢ for maturity
date T by F (¢, T) and the spot price on day ¢ by S(¢). The forward curve prevailing on day
t is the collection of futures prices {F (¢, T)}r for all traded maturities 7 = 1, 2, ... , N.

In what follows, we will use indifferently the terminology futures or forwards. It has been
known for some time (see Cox et al. (1985)) that, in the absence of credit risk, forward and
futures prices are equal under non-stochastic interest rates. In commodity markets, interest
rate risk plays a secondary role compared to the commodity spot price risk and will not
be our first concern in this chapter (see Geman and Vasicek (2001) for the introduction of
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stochastic interest rates in energy forward and futures contracts). From now on we will use
terms “futures price” and “forward price” interchangeably.

For crude oil, futures for up to 84 months are traded on both the ICE and NYMEX, for
oil products such as heating oil and gasoline up to 18 and 36 months respectively. The
NYMEX recently started trading long-dated natural gas futures contracts, going up to 72
months ahead. More and more long-dated energy futures contracts are being traded today,
resulting in the availability of longer forward curves.

The first-to-expire futures contract is usually referred to as the front-month, or nearby
contract, and denoted by the letter M after the contract’s name. The second nearby contract
(next-to-front) is denoted by M+1, the next one M+2 and so on. On the first maturity date,
the front-month contract expires and the next-to-front becomes the front-month contract.
All other futures contracts shift by one position (M+2 becomes M+1 and so on) and a new
contract is added. This shift is called the rollover. It plays a key role in the management of
commodity indices as the roll yield may be a positive or negative component in the total
return, depending on the shape of the forward curve. Given the billions of dollars that have
been recently poured into commodity markets, the rolling activity has itself an impact on
the volatility of the nearby futures. This in turn may induce a portfolio manager to invest
the share of the index dedicated to a given commodity (e.g. crude oil) into more distant
maturity forward contracts.

Futures markets such as the ICE and NYMEX provide the most reliable and liquid
forward curves. However, sometimes it can be beneficial to use OTC forward prices for the
construction of the forward curve. For example, in electricity markets this can be a better
alternative, as futures contracts are either not traded on exchanges or are rather illiquid.
Then it can be a complicated task to construct a smooth forward curve, indexed by regular
maturities, from prices of irregularly spaced and complex forward contracts (which may
be based for instance on average prices over a specified period). The example of such a
forward curve construction is given in Benth et al. (2007).

Forward curves are of paramount importance in commodity markets, for several reasons.
They provide information about the views of market participants, anticipated price trends
and expectations about future supply and demand. Futures prices observed in liquid futures
markets provide price discovery and are essential for daily marking to market existing port-
folio positions as well as for risk management activities such as VaR calculations. Forward
commodity prices influence storage, production and other strategic decisions in related indus-
tries such as oil refining or soybean processing. Finally, futures contracts provide the right
way of calibrating derivatives pricing models under the risk-neutral probability measure, as
they present a great liquidity, hence the market “view” one needs to capture.

The “Rational Expectation Hypothesis”, discussed for a long time by famous economists
(such as Keynes and Lucas), examines whether forward prices provide valid forecasts for
spot prices in the future. However, the actual forecasting ability of futures prices in com-
modity and, in particular, in oil markets is rather poor. For example, if futures prices were
right in predicting the spot price of oil then, according to the forward curves observed one
and two years ago (February 2006 and 2007), the oil price in February 2008 should have
been 67 $/bbl (while in fact, on 19 February 2008, it was over 100 $/bbl).

The spot price of a commodity is often considered as the most important factor driving
the whole forward curve (see Gibson and Schwartz (1990), Schwartz (1997)). The influence
of the spot price becomes greater as the futures contract approaches maturity, culminating
in the following convergence property: on maturity date, the futures price must coincide
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with the spot price
F(T,T)=S(T). 2.1

This property follows from the absence of arbitrage and the possible occurrence of physical
delivery of a commodity at the futures contract’s maturity. However, there are markets
where the spot price is rather opaque or unreliable (or completely non-existent, as is the
case, for instance, in electricity markets). In such cases, the convergence property does not
necessarily hold. It is also possible that the convergence does not take place smoothly as
the maturity approaches (which is the case in, for instance, crude oil markets), but only on
maturity date, when the futures price makes a sudden move to coincide with the spot price.
These considerations, among others, may question the suitability of the spot price as the
main driving factor of the forward curve. We shall return to this issue in Section 2.3.

Crude oil forward curves have traditionally been in one of these two shapes: backwarda-
tion, when the futures prices for short maturities are more expensive than those maturing
later, or contango, which is the opposite situation. Figure 2.1 shows the NYMEX crude oil
forward curve on 21 February 2008, when the market was in backwardation, and Figure 2.2
shows a contango forward curve observed on 28 February 2007.

Whether the market is in backwardation or in contango depends on the current price as
well as inventory levels, transportation and storage costs, supply and demand equilibria,
strategic and political issues and many other factors. A particular shape of the oil forward
curve (backwardation or contango) is closely related to the notion of the so-called conve-
nience yield, i.e. the benefit of holding a physical commodity over a futures contract (in the

NYMEX crude oil forward curve, Feb. 21, 2008
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Figure 2.1 NYMEX crude oil forward curve, 21 February 2008
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NYMEX crude oil forward curve, Feb. 28, 2007
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Figure 2.2 NYMEX crude oil forward curve, 28 February 2007

next section we will discuss the convenience yield in more detail). Backwardated forward
curves arise when the benefit of holding a physical commodity (i.e. the convenience yield)
is high and the interest rates and storage costs (representing together the “cost of carry”)
are relatively low. This happens, for instance, when there is a general perception of low
availability of oil and instability of its supply. More generally, the shape of the forward
curve summarizes perceptions of oil market participants about the current state and future
developments of the global oil market, such as new fields discovery or new deep sea oil rig
equipment.

As said before, oil forward curves have until recently always been in either backwardation
or contango state, with a much more frequent situation of backwardation (see Gabillon
(1995)), in agreement with the terminology ‘“normal backwardation”, introduced in the
economic literature by Keynes. However, in 2005-2006 a hump-shaped forward curve was
observed briefly (see Figure 2.3), which was probably caused by a massive arrival of hedge
funds and other new investors into oil futures markets and the short-dated futures rollover
strategies they employed.

Lastly, for seasonal commodities such as natural gas, electricity, or agricultural com-
modities, futures prices are largely governed by seasonal demand (as is the case for energy)
or supply (for agricultural commodities). For those commodities, transportation or storage
capabilities are limited, so the excess demand or supply shortage cannot be absorbed by
transporting a commodity from a different part of the world with excess supply, or storing
at times of plentiful supply and using it whenever necessary. This results in a high seasonal
premium on futures contracts maturing during periods of high demand (such as winter, in
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Figure 2.3 NYMEX crude oil forward curve, 7 March 2007

the case of natural gas) or low supply (such as before harvest, for agricultural commodities).
This is illustrated in Figure 2.4, where a forward curve for natural gas in the UK is shown.
Futures maturing in the winter (the time of high demand for gas in the UK) are clearly at
a premium compared to those maturing in summer.

Most traditional methods of forward curve modelling, which we will review in Section 2.2,
are unable to deal with this prominent seasonal feature observed in many futures markets.
In Section 2.3 we describe the seasonal forward curve model which introduces the seasonal
premium into futures prices and hence is able to capture seasonalities present in forward
curves such as those shown in Figure 2.4.

The dynamic modelling of the forward curve (i.e. the description of its random move-
ments over time) and the understanding of the main fundamental factors behind its evolution
have been the subject of extensive research, both by practitioners and academics. A proper
model of the dynamics of the forward curve is an essential input in most derivative pric-
ing models, scenario simulation and risk management applications. A successful forward
curve model should be able to match current observed forward curves, generate realis-
tic forward curves containing empirically observed features and ideally should be able to
extrapolate the forward curve beyond the longest observed maturity. Moreover, it should
be easily and quickly calibrated to the market data. However, just as in case of the Trea-
suries yield curves, commodity forward curve modelling is a challenging task, due to the
inherent multidimensionality of the problem and a non-trivial dependence structure across
maturities. In contrast to interest rates, features such as seasonality may further complicate
the modelling process.

In the next section we review several forward curve modelling approaches, before pro-
ceeding in Section 2.3 to the case of seasonal forward curves. Section 2.4 describes the
application of the Principal Component Analysis to commodity forward curves. Section 2.5
introduces several forward curve indicators and Section 2.6 concludes.
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Natural gas forward curve, March 7, 2007
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Figure 2.4 UK Natural gas forward curve, 7 March 2007

2.2 FORWARD CURVE MODELS FOR NON-SEASONAL
COMMODITIES

Forward curve modelling approaches for commodities can be loosely classified into three
main categories. The first one is a martingale-based approach, which models the dynamics
of futures prices directly under the risk-adjusted probability measure, making use of the
fact that futures prices are martingales under such a measure. One or possibly several risk
factors driving the risk-neutral dynamics of the entire forward curve are usually assumed
(resulting into so-called one-factor or multifactor models).

Another approach is a static arbitrage-based one, making use of the cash-and-carry argu-
ments and describing the no-arbitrage relationship between the spot and futures prices. In
the remainder of this section we shall review these modelling approaches in more detail.

Multifactor models such as described in Clewlow and Strickland (2000) are similar to the
celebrated HIM approach for modelling the yield curve (Heath ef al. (1992)), in that they
directly model futures prices under the risk-neutral probability measure.! So the following
representation is often considered:

dF(t,T)

A l;a,» (t, TYdAW; (1), (2.2)

! As a futures contract does not require an initial investment, under Q its price remains constant on average and
there is no drift term representing the average growth on the investment.
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where n is the number of risk factors, W;(¢), i = 1, ... , n are Brownian motions repre-
senting sources of uncertainty and o;(¢, T) are volatilities associated with the risk factors
(possibly varying deterministically in time and maturity). The Brownian motions can be
correlated, but if the risk factors are derived using the Principal Component Analysis
(described in Section 2.4), then they are assumed uncorrelated. This approach focusses
on the martingale property of (F(t, T));<r under Q, which is useful for derivatives pric-
ing but not for trading strategies involving spot and forward positions, the most common
ones in a trading environment, as it says nothing about the actual evolution of the for-
ward curves and hence cannot be calibrated to historical futures market data. We will
mainly concentrate in this chapter on the evolution of a forward curve under the sta-
tistical probability measure, as we are mainly interested in trading strategies in forward
contracts.

In the first approach, the main fundamental factors (sources of uncertainty) are rather
arbitrary (e.g., derived by the PCA) and do not always have a clear meaning. Alternatively,
more interpretable fundamental stochastic factors can be taken. For example, a popular
choice is to take the short-term and long-term price components (e.g. Lucia and Schwartz
(2002), Sorensen (2002)), which together determine the commodity’s spot price:

S() =s(1) + X(1) + L), (2.3)

where X (¢) and L(t) are respectively the short- and long-term price components and s(t) is
a possible (deterministic) seasonal component of the spot price. Then the futures prices are
obtained using the relationship

F@t,T)=Eo(S(T)|F), 2.4

where Q is the risk-adjusted probability measure and F; is the information available up to
date r. To evaluate the expression (2.4), the dynamics of the fundamental factors under the
risk-adjusted probability measure O should be specified. Usually such dynamics include the
market prices of risk (the spot price risk and convenience yield risk), which make these
models rather hard to calibrate, as market prices of risk are not observable. Moreover,
the forward curves derived from (2.4) using this approach usually do not match observed
forward curves, which is obviously a problem.

The static arbitrage approach is based on the no-arbitrage assumption and implies that
the futures price of a commodity (or any other asset) must be equal to the cost of acquiring
the physical commodity and carrying it until the future’s maturity. For financial assets,
this means that the futures price must exceed the spot price by the interest accumulated
on the investment until the maturity date (minus eventual dividends, in case of stocks).
Physical commodities, unlike financial assets, cannot be stored without cost; hence, for
them, the cost of carry is also determined by the accumulated storage costs. However, these
arguments would imply that commodity forward curves should always be in contango, i.e.,
futures prices for longer maturities should always be higher than those for shorter maturities
and the spot price. In practice, this is rarely the case; in fact, the crude oil futures market
historically has been in backwardation approximately 75 % of the time. To cope with this
observation, the notion of convenience yield was introduced by Kaldor (1939) and Working
(1948). It is defined as the premium received by the owner of the physical commodity and
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not accruing to the holder of a futures contract written on it. This concept leads to the
famous cost-of-carry relationship:

F(t,T) = S(t)e[r(l)+0(7)*}7(1)](T*7)’ (2.5)

where r(¢) is the riskless interest rate on the date ¢, c(¢) is the storage cost (per unit of
time and per dollar worth of commodity) and y(#) the convenience yield, all continuously
compound. Often, the convenience yield is defined net of storage costs: y(t) = y(¢) — c(?),
in which case the cost-of-carry relationship becomes

F(t,T) = S@t)elrO—yOIT=0, (2.6)

In its early versions, the cost-of-carry relationship (2.6) included a constant or deterministic
(but time-varying) convenience yield, such as in Brennan and Schwartz (1985). The next
step was to define the convenience yield as a function of the spot price. More realistic
versions of (2.6) (e.g. those in Gibson and Schwartz (1990), Litzenberger and Rabinowitz
(1995)) included the convenience yield as a stochastic process. Some authors stressed a
time-spread optionality embedded in the convenience yield (discussed in e.g. Routledge
et al. (2000)). To emphasize this option-like feature of the convenience yield, it should be
considered as a function of maturity 7' (or time to maturity 7 — ¢), as well as time ¢: y =
y(t, T), as suggested in Borovkova and Geman (2006). This representation is particularly
useful in the case of seasonal commodities, as we show in the next section.

Obtaining a dynamic model for the forward prices from the cost-of-carry relationship
(2.6) goes as follows. The spot price S(¢) and the convenience yield y(¢) are considered as
the fundamental stochastic factors driving the forward curve’s evolution. A stochastic model
is assumed for the joint dynamics of S(¢) and y(¢#) and then the corresponding dynamics
for the futures prices is obtained by substituting the expressions for S(¢) and y(¢) into
the cost-of-carry relationship (2.6). Sometimes the interest rate can be added as another
fundamental factor, as in Miltersen and Schwartz (1998). The cost-of-carry relationship
(2.6) holds under any probability measure, so for the purposes of derivatives pricing, the
risk neutral dynamics of futures prices can be obtained from the risk-neutral dynamics of
the fundamental factors.

None of the approaches described above is directly suited to modelling seasonal forward
curves, often observed in energy and agricultural markets. One attempt has been made
by Sorensen (2002) and Lucia and Schwartz (2002), who consider a seasonal component
of the spot price that subsequently enters the expression for the forward prices in a rather
opaque way. However, seasonality in forward prices obtained in this way does not match the
empirically observed seasonal patterns present in the forward curve, especially the fact that
the forward price’s seasonality is a function of the contract maturity T and not so much of
the current date 7. In the next section we introduce an explicit modelling of maturity-related
seasonalities in commodity forward curves. Ours is a two (or three) factor model, where
the spot price is replaced by a more stable quantity and the convenience yield is considered
net of deterministic seasonal effects.
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2.3 THE SEASONAL FORWARD CURVE MODEL
AND ITS EXTENSIONS

Forward prices of seasonal energy commodities such as natural gas and electricity are
influenced by seasonal demand due to heating or airconditioning; agricultural commodities
are influenced by seasonal supply (harvest). These constraints result into positive seasonal
premia attached to calendar months of high demand or low supply. Furthermore, the com-
modity spot price can be unreliable or unavailable, so it is not always a good candidate to
be the main fundamental factor driving the forward curve. In this section we explore these
observations within the framework of the “seasonal forward curve model”. In Section 2.3.1
we describe the original two-factor model proposed by Borovkova and Geman (2006) and
apply it to seasonal energy commodities such as natural gas and electricity. In Section 2.3.2
we introduce an important generalization of the original model. In the generalized seasonal
forward curve model, we introduce three stochastic factors, in order to allow for a trend in
a seasonal forward curve.

2.3.1 Seasonal cost-of-carry model

For clarity of exposition, we will assume that the forward curve contains liquid maturities
up to one year (12 months) or an integer number of years. We define the first fundamental
factor as the geometric average of the observed forward prices at date t:

N
]_[ F@t,T), 2.7)
T=1

where N is gle most distant maturity and N = 12 x k (k = 1, 2, ... . This assumption
assures that F(z) is a non-seasonal quantity, which is another advantage of using it instead
of the (possibly seasonal) spot price.

Next, we define the seasonal premia s(M), M =1, ... , 12, attached to calendar months,
as the collection of 12 long-term average premia with respect to the average forward
price F(r). We assume that the vector (s(1), ... , s(12)) is deterministic and require that

i s(M) =0.

Finally, we write the seasonal cost-of-carry model describing the relationship between
the prevailing forward price F(¢) and the futures price F (¢, T):

F(t,T) = F(t)elsT-vt-T=-0=0l (2.8)

where the quantity y (¢, T — t), defined by the relationship above, is called the stochastic
premium at date t (as opposed to the deterministic seasonal premium s(7')), associated with
the maturity 7. We denote the time to maturity t = T — t and write y(t, 1) = y(¢t, T —
t), to emphasize that the stochastic premium y is indexed by the time to maturity t rather
than the maturity date T (as is the case for the deterministic seasonal premium s(7)).

We define s(7T") for maturity T as follows: s(T) = s(M) if the maturity 7 is in the
calendar month M (M = 1, ... , 12). Note that, in this way, futures maturing in, for
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example February 2009 and February 2010, get the same seasonal premium s(2) associated
with the month of February. Furthermore, note that we define s(M) as an absolute quantity
(expressed in percentage) and not as a rate. This reflects that the seasonal premium does
not accumulate with distant maturities, but is only associated with the calendar maturity
month. In this way, the seasonal premium for the February contract is the same, be it the
front month contract or the one maturing in a year’s time.

To summarize, futures maturing in a particular calendar month can be either at a premium
or a discount relative to the average level of the forward curve. This is a periodic, i.e., sea-
sonal effect, which is associated with periods of high demand or low supply. This premium
is summarized in the non-stochastic quantity s(M ), which can be consistently estimated
from the historical data.

The quantity y (¢, 7), on the other hand, is a stochastic process in ¢, indexed by the
time to maturity 7, and summarizes all deviations of the actual observed futures prices
from the anticipated futures prices given by F(t)e*D. Its expected value is zero, since all
systematic deviations of futures prices from F(t) are embedded in the seasonal premium
s(T). So we will model it by the Ornstein-Uhlenbeck process with zero mean. We call y(z,
T) the stochastic cost of carry, or stochastic premium devoid of seasonal premium, for time
to maturity t. Factors influencing the function y are, for example, levels of stocks, political
news and events or unusual weather conditions.

The seasonal cost-of-carry model (2.8) is related to the traditional cost-of-carry models
such as the one exhibited in Brennan and Schwartz (1985) and many other papers. To
our best knowledge, it is the only model that uses the average forward price F(z) instead
of the spot price S(¢) as the first state variable. Accordingly, the traditional convenience
yield introduced by Kaldor (1939) in the Theory of Storage is replaced by the stochastic
premium y (¢, 7). This stochastic premium can be seen as the “relative convenience yield”
(with respect to its average across all maturities), net of the scaled seasonal premium:

1 & s(T)
v 1) = MZ:ly(t, M) =y, 1) - =,

where y (¢, T) is the traditional convenience yield. The stochastic premium y and the seasonal
cost-of-carry model have the merit of being applicable to non-storable commodities such as
electricity. For these commodities, the traditional cost-of-carry model and the convenience
yield do not make sense, as the absence of storability prevents any cash-and-carry arguments
(see Eydeland and Geman (1998)). Moreover, the seasonal cost-of-carry model does not
imply any convergence, smooth or not, of the futures price to the spot price, a property that
is unobserved in a number of commodity markets.

Another advantage of having the average forward price F(¢) as the first fundamental
factor is that it is a non-seasonal quantity by construction, and hence can be modelled
by a stationary stochastic process of the model builder’s choice, e.g., mean reverting or
geometric Brownian motion, or including jumps. The quantity F gives a very good proxy
for the overall level of the futures market, while being more visible and less unstable than
the spot price. However, it can happen that, in forward curves spanning several years, the
average forward price differs for different years ahead, as it reflects the market anticipation
of the remaining reserves left at that time for exhaustable commodities such as copper,
crude oil or uranium. Below we introduce an important generalization of the model, which
deals with such issues.
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Note that the convergence property of the futures price to the spot price (2.1) provides
the following expression for the spot price within the seasonal cost-of-carry model:

S(t) = F(1)e' ™. (2.9)

Hence, if the spot price is not available in a particular market, the above relationship can
be used to define a valuable proxy for the spot price.

Returning to the dynamics of the state variables, the stochastic premium can be arguably
represented by an Ornstein-Uhlenbeck process with zero mean:

dy(t,7) = —aPy @, v)dt + ndW (@), (2.10)

where the mean-reversion speed and the volatility parameters may differ per maturity 7. In
the above specification, the entire term structure of y (¢, t) is driven by the same Brownian
motion W (¢); however, more sources of uncertainty can be easily incorporated. The average
forward price F(¢) can be modelled by any appropriate diffusion process, uncorrelated to
the process driving the term structure of {y (¢, t)},;. For example, a mean-reverting process
can be used, which is a popular choice for commodities. However, in recent years most
commodities have experienced massive price increases. Geman (2005) argues that, in the
case of crude oil prices, “mean-reversion is dead”. This may be true for other commodities
such as copper or uranium. In these cases, one can use other model specifications for F(r),
such as a geometric Brownian motion or a mean-reverting process with a deterministic (or
even stochastic) trend.

The seasonal cost-of-carry model (2.8) provides the relationship between the fundamental
factors and the futures contracts prices. So the dynamics and the distributions of the futures
prices can be obtained from the dynamics of the fundamental factors, by substituting them
into (2.8). For example, the above specification (2.10) of y (¢, r) and a mean reverting
diffusion for the log-average forward price X (t) = In F(r)

dX(t) = a(m — X(@))dt +odW(t) (2.11)
lead to the following futures price dynamics:

d(nF(t,T)) = [a(m — X@)) + y(t, 1)@ D1 + 1)]dt
+ odW(@) —nPwdW@), [t =T —t.] (2.12)

So in this case, the futures price F(t, T) is lognormally distributed, with mean F(t)e*™ and
the volatility term structure defined by

8(t, 1) = Vol + (nOr)2. (2.13)

This is the description of the futures prices under the statistical probability measure P.
For derivatives pricing, only the risk neutral dynamics are relevant. These are obtained by
specifying the risk neutral dynamics of the fundamental factors and using again the equality
(2.8). Now, under the risk neutral measure Q, futures prices are martingales, i.e., their drift
is identically zero. This results into a restriction on the model parameters under Q, similar
to the HIM condition (Heath et al. (1992)) on Treasury forward rates.
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The seasonal premium and other model parameters can be estimated from the set of
historical futures prices. The average forward price can be computed on any day ¢ by
formula (2.7) (as said before, it is essential that the futures prices up to one year or an
integer number of years are included, in order to eliminate seasonal features). The seasonal
premium associated with the month M is estimated according to its definition by

§(M) = % > nF(e, M) —InF (1)), (2.14)

t=1

where n is the number of observations in the historical dataset and we include all futures
expiring in the calendar month M (possibly for different years). The series of daily stochastic
premia (y (¢, T))i=1,.. » for all available times to maturity t is computed as

_ In(F@)/F(, T) +5§(T)
. .

Y, 1) (2.15)

From the obtained series (F(¢)); and (P(t, T));, the parameters of the associated stochastic
diffusion models can be estimated by, for instance the method of maximum likelihood.

Figure 2.5 shows the estimated seasonal premia for UK natural gas, electricity and heating
oil futures. Our estimates are based on historical datasets of ICE futures prices from 2001
to 2004.

As expected, futures expiring in winter are at a premium with respect to the average
price level, and summer futures at a discount. December gas futures are on average at a
28 % premium, December electricity futures are at 15 % premium. The seasonal premium
for heating oil is generally smaller, and is at most 3 %. This reflects a wider availability of
storage and transportation for heating oil. Note that similar products traded on the NYMEX
may exhibit different seasonal premia, as those reflect the risk aversion of producers and
speculators in each particular market to different types of events.

Figure 2.6 shows the volatility term structure of the stochastic premium y(t, t), for
natural gas and gasoil. Note that it mimics the behavior of the futures prices volatility,
which decreases for more distant maturities (the so-called Samuelson effect).

Figure 2.7 shows the realization of the natural gas and gasoil stochastic premium y (¢, 7),
for T = 2, i.e. for two months to maturity. The mean of y is indeed zero and the graph
resembles a mean-reverting process.
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Figure 2.5 Natural gas, electricity and heating oil seasonal premia
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Figure 2.6 Volatilities of natural gas and gasoil stochastic convenience yields
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Figure 2.7 Natural gas and gasoil stochastic convenience yields, 7 = 2

Applications of the seasonal cost-of-carry model include the generation of realistic sea-
sonal forward curves for risk management and scenario simulations. Moreover, this model
can be used for extending the observed forward curves beyond the most distant liquid matu-
rity, a necessary task in the valuation of physical assets such as gas storage facilities or
refineries. The generalization of the model, introduced in the next paragraph, is particularly
useful for this purpose. The formulation of the fundamental factors’ risk neutral dynamics
provides a unifying framework for pricing derivatives that depend on the entire forward
curve, such as calendar spread options.

2.3.2 The generalized seasonal forward curve model

Recall that, above, we defined F(t) as the geometric average of all available forward prices
or, in other words, In F(¢) as the arithmetic average of all log-futures prices:

N
InF(t) = % Z InF@,T), (2.16)
T=1
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Figure 2.8 NYMEX Natural Gas forward curve, three factor model

where N is the longest traded maturity. In cases such as depicted in Figure 2.4, we can
define the (geometric) average forward prices F;(¢) for each year i present in the forward
curve as

12i

— 1

InFi(n) = - > WF@.T). (2.17)
T=12(i—1)+1

To obtain a multiplicative model similar to (2.8), we first go from forward prices to their
logarithms, so we consider the log-forward curve (In F(¢, T))r. Figure 2.8 shows the log-
arithm of a forward curve of NYMEX Natural Gas futures, together with a collection of
average yearly forward log-prices (In F;(t));. These average log-prices are highly correlated
and move for a large part together, so defining them as separate fundamental stochastic
factors does not really make sense, not to mention the increase in the problem’s dimension-
ality. Instead, we suggest extending the number of fundamental factors by just one extra
factor, in the following way.

Note that the collection (In F;(¢)); defines a step function (in terms of maturities) approx-
imating the logarithm of the forward curve. A more general way to approximate the overall
shape of the log-forward curve on day ¢ is to fit a least-squares straight line through all
available forward log-prices:

Xr(t) = Xo(t) + ()T, (2.18)

where the parameters «(¢) (slope) and X(¢) (intercept) are estimated on each day ¢ by the
ordinary least squares method. This straight line approximation is illustrated in Figure 2.8.
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Note that equation (2.18) describes, at date ¢ fixed, Xr(¢) as an affine function of the
maturity 7.

Denote Fy(t) = In Xo(¢) and Fz(t) = In X 7(t). The relationship (2.18) implies that the
overall shape of the forward curve is approximated by an exponential function given by

Fr(t) = Fo(t)e" T, (2.19)

where «(t) evolves randomly over time.

If the slope a(¢) on day  is negative, then the forward curve is in overall backwardation,
such as in Figure 2.4, where the seasonal premium is still clearly present. The positive
slope parameter «(¢) defines the contango forward curve shape. If the slope parameter is
not significantly different from zero, then we are in the situation of the initial seasonal
cost-of-carry model of the previous section, with the parameter Fy(f) being exactly the
geometric average of the forward curve F(1).

The seasonal deterministic premia s(M) (M =1, ... , 12) are now defined as the average
premia, expressed in %, in futures expiring in the calendar month M with respect to Fr(t)
described in (2.19) and defining on day t the overall shape of the forward curve.

The new formulation of the generalized seasonal cost-of-carry model is then

F([, T) — fo(t)@a(t)T+S(T)_y(t’T_t)(T_t), (220)

where y (¢, T) is again the stochastic forward premium, defined by the relationship (2.20)
above.

The slope a(t) and Fy(z) (or its logarithm X o(¢), which is the intercept), defining together
the straight line (2.18), are now the two new fundamental factors of our generalized seasonal
forward curve model. The third one remains the stochastic premium y (¢, t), defined by the
relationship (2.20).

The two new fundamental factors F(¢) and «(¢) have a well-known interpretation, closely
related to the Principal Component Analysis of the forward curve, described in Section 2.4.
These factors reflect the level and slope of the forward curve on date ¢ and contain most
of the forward curve’s variability. The remaining stochastic variation of the forward curve,
in particular its curvature, is now summarized in the stochastic forward premia y (¢, 7).
We postulate that all three fundamental factors are pairwise uncorrelated. Both Fy(¢) and
a(t) are uncorrelated to y (¢, 7) because the latter quantity accounts for unexpected shocks
in the commodity market, such as extreme weather conditions or disruption in supply.
Furthermore, we can view Fo(t) as being uncorrelated to «(f) (the slope of the affine
function of maturity). The theory of normal backwardation («(¢) negative when Fo(t) high)
appears to be essentially invalidated by the current commodity markets, as Fy(t) represents
the current position held by many market participants, including new entrants, and the slope
a(t) carries long-term views of the fundamental players.

The dynamics of the new fundamental factor F(¢) can be specified by a model builder
according to the observed empirical features deduced from historical data. For example, it
can be a mean reverting process with a constant or increasing level of mean-reversion, or
a Geometric Brownian motion. The slope «(¢) and the stochastic premium y (¢, t) should
be modelled as Ornstein-Uhlenbeck processes mean reverting to zero. Since we continue
to observe, including in the recent past, forward curves that change from backwardation to
contango and vice versa, we believe that the choice for a(¢) of Ornstein-Uhlenbeck process
mean-reverting to zero is a reasonable one.
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The fundamental factors’ dynamics specifications lead to the dynamics of forward prices
via the generalized seasonal cost-of-carry relationship (2.20). Portfolio strategies involv-
ing spot and forward positions will be devised using the representation under the real
probability measure P. For the purposes of derivatives pricing, all dynamics should be
specified under the risk-adjusted probability measure Q. Equation (2.20) can be viewed as
written under the measure Q, hence any risk-neutral dynamics for the three fundamental
factors imply the corresponding dynamics and distributions for the futures prices.> With
these in hand, derivatives such as futures options or calendar spread options can be easily
valued by a Black-Scholes-like approach or by Monte Carlo simulations.

2.4 PRINCIPAL COMPONENT ANALYSIS
OF A FORWARD CURVE

Forward curve modelling is an inherently multivariate problem: there are as many variables
(futures prices) as the number of traded futures contracts with different maturities (e.g., 72 for
NYMEX Natural Gas futures). In applications such as risk management, considering them
as separate (but correlated) risk factors is rather excessive since these futures prices move,
for a large part, together. The well-known and powerful statistical multivariate technique
of Principal Component Analysis allows us to concentrate only on a few main uncorrelated
linear combinations (i.e. principal components) of the forward prices (which may represent
the main risk factors), which together describe virtually all possible forward curves or their
evolutions.

In studies involving a large number of observed variables, it is often convenient to con-
sider a smaller number of linear combinations of these variables, which summarize their
main features. Principal components are such uncorrelated linear combinations. There are
as many principal components as original variables and, taken together, they explain all the
variability in the original data. However, because of the way they are calculated, it is usually
possible to consider only a few of the principal components, which together explain most of
the original variation. The principal components are ordered according to their contribution
to the variability of the data: the first component contributes more to the variability than the
second one and so on. To visualize the principal components, the coefficients of these linear
combinations (i.e. of the principal components) are used. They are called the principal com-
ponent loadings and provide a convenient summary of the influence of the original variables
on the principal components (or, equivalently, the response of each original variable to a
change in the corresponding principal component), and thus a useful basis for interpretation.

A forward curve of practically any shape can be constructed by combining three simple
shapes: the so-called level, slope and curvature. Consequently, the dynamic of the forward
curve is mainly determined by the evolution of these three main factors: parallel shift of the
entire forward curve, “tilting” of the forward curve and changes in its curvature. This was
first established by Litterman and Scheinkman (1991) for the US government bond yields
and subsequently applied to commodities by Cortazar and Schwartz (1994), who studied
the evolution of copper forward curves. It turns out that, for non-seasonal commodities
such as crude oil, the first three principal components of the historical futures price returns

2 However, as said before, the martingale property of futures prices under the risk-adjusted probability measure
leads to certain restrictions on drifts and volatilities of the fundamental factors under Q.
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Figure 2.9 Loadings of the first three principal components, oil futures prices

correspond exactly to these three main factors: the level, slope and the curvature. This is
shown in Figure 2.9, which depicts the loadings of the first three principal components for
the historical returns of Brent oil futures prices for the first 18 maturities.

These first three principal components explain approximately 95 % of the original varia-
tion in the forward curves. Hence, they provide an excellent way of extracting most of the
essential information and expressing it via a small number of factors. The economic inter-
pretation of these factors is rather straightforward: for energy futures (and, to a lesser extent,
for other commodities) a parallel shift of the forward curve is caused mainly by changes in
global economy, political situation, and exploration techniques. A slope change is caused
by changes in expected long-term price or by a change in the “convenience premium”, or
convenience yield, discussed above, on holding a physical commodity. The curvature of the
forward curve is related to volatilities of futures prices, as well as long-term vs. short-term
expectations on supply and demand.

Depending on a given application, the PCA can be performed either for historical futures
prices or returns. For simulations or for generating trading indicators (discussed in
Section 2.5), PCA is applied directly to the futures prices, as is done, for example, in Weron
(2006) for simulating electricity forward prices. For risk management and derivatives pricing
applications, the main risk factors and corresponding volatilities can be conveniently sum-
marized by the principal components of the historical futures price returns. This significantly
reduces the number of risk factors in futures portfolios and simplifies Value-at-Risk calcula-
tions. For applications of principal components in risk management for bond portfolios see
e.g., Golub and Tilman (1997), Singh (1997), and Borovkova (2006) for commodity portfo-
lios. In multifactor forward curve models (such as that of Clewlow and Strickland (2000),
represented by the equation (2.2)), the first three principal components of the forward curve
are taken to be the three fundamental factors, and corresponding volatility functions o ;(¢, T')
(suitably parameterized) are estimated from the historical data.

For seasonal commodities, the application and interpretation of the principal component
analysis is not straightforward. PCA cannot be applied to historical forward curves directly
(although many authors have attempted to do so): the resulting principal components will
reflect the harmonics at the main frequencies present in the periodical pattern. As a result,
many principal components might seem important in explaining the forward curve’s vari-
ability (and not just the first three): for example, Koekebakker and Ollmar (2001) report
that as many as 10 principal components are needed to adequately explain the electricity
forward curve’s variability, which is obviously a too high-dimensional problem. We would
like to stress that this is caused by maturity-related seasonalities found in natural gas forward
prices and volatilities.
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Figure 2.10 Loadings of the first three principal components, deseasonalized natural gas futures
prices

One way to deal with prominent seasonalities when applying PCA to seasonal forward
curves is to apply PCA separately to historical futures prices maturing in different seasons
(an approach adopted in e.g., Tolmasky and Hindanov (2002)), or even separately for each
maturity month (as in Blanco et al. (2002)). However, this results in over-parametrization.
Alternatively, the historical forward prices and returns can be deseasonalized before applying
the principal component analysis. For applications such as forward curve simulations, the
seasonal premia (s(M), M = 1, ... , 12) can be estimated in the way described above and
the PCA applied to the deseasonalized historical forward prices F (t,T)=F(t, T)e‘f(T),
where §(T) is the estimated seasonal premium corresponding to the maturity month 7.

We applied PCA to the deseasonalized historical natural gas forward curves. The factors
analogous to the level, slope, and curvature are clearly present, as Figure 2.10 shows.

For risk management and derivatives pricing applications, futures price returns should be
also deseasonalized, since futures price volatility can also exhibit seasonal (maturity-related)
patterns (for example, natural gas futures prices are more volatile for futures expiring in
months of high demand, i.e. winter months in UK). This can be done by first estimating the
seasonal component of the futures price volatility oy, M = 1, ... , 12 for all calendar matu-
rity months, and then applying the PCA to the deseasonalized returns 7(¢, T) = r(¢, T) /o7,
where r(¢, T) is day- return on futures with maturity 7 and 67 is the estimated seasonal
volatility component corresponding to the maturity month 7. Then the main risk factors
extracted by the deseasonalized PCA can be subsequently used in portfolio risk analysis
and derivatives pricing, in the same way as for non-seasonal commodities.

2.5 FORWARD CURVE INDICATORS

We presented above a detailed analysis of commodity forward curves and discussed the
quantification of a forward curve’s features by means of seasonal premia and principal com-
ponents. However, in a trading environment there is often a preference towards expressing
information in the form of technical indicators (such as e.g. Relative Strength Index). An
indicator quantifies a certain feature of the spot or forward market by means of a single
number, extracted from current market prices. Such indicators can be easily monitored on a
daily or intra-day basis and used for developing trading strategies. There are many technical
indicators developed for asset spot prices which are routinely applied to commodity spot
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prices. However, trading indicators obtained on the basis of forward prices are not that
common. Here we discuss several such indicators and outline their potential use.

As we noted above, forward markets for non-seasonal commodities such as crude oil are
mainly in two states: backwardation or contango. Whether the market is in backwardation or
in contango depends on many fundamental factors. The depth of backwardation or contango
(characterized by the steepness of the forward curve) or an anticipated switch from one state
to the other is important for market participants: it influences their trading and production
decisions. Hence, it is important to detect or forecast such a switch as early as possible.
Often, the difference between futures prices with two closest maturities (the so-called first
intermonth spread) is used for measuring the strength of backwardation or contango and for
detecting changes in forward markets. Fundamentals of a commodity market are ultimately
responsible for any changes in forward curves, so a change can be anticipated by studying the
market fundamentals. In practice, however, traders are interested in working with indicators
derived from the futures prices alone, such as the first intermonth spread. The first intermonth
spread (or any other calendar spread) is rather inefficient as an indicator of an overall
forward curve shape, as it uses only futures prices with two maturities, while many liquid
futures prices are often available. Here we describe two change indicators that use the entire
forward curve, i.e. all available futures prices. The first indicator measures the “strength” of
the backwardation or contango market, i.e. the steepness of the forward curve. The second
indicator is based on the principal component analysis. The application of these indicators
to seasonal forward curves can reveal features normally obscured by dominant seasonal
effects.

A forward market can be in backwardation or in contango for a prolonged period of time.
A change from one state to the other is gradual and takes several days or even weeks. The
change from backwardation to contango and vice versa is characterized by an intermediate
stage of an almost flat forward curve. This observation is crucial in constructing the change
indicators.

Denote Y(t, T)=F¢, T+ 1) — F¢, T), T =1,... ,N — 1, the day-¢ intermonth
spreads, i.e. the differences in futures prices with consecutive maturities (N being the longest
liquid maturity). The first candidate for the change indicator is

N-1

L =) wrY@,T), 2.21)

T=1

where (Wr)7=1,.. Ny—1 is a suitably chosen collection of weights. /(¢) measures the steepness
of the forward curve on day ¢ and the following three situations can arise:

. I1(t) > > 0 —> upward-sloping forward curve (contango);

. I1(t) < < 0 — downward-sloping forward curve (backwardation);

3. I1(t) = 0 — flat forward curve (intermediate market state), indicating a possibility of
a change.

N =

Futures prices are volatile and, in turn, so is the indicator /;. Hence it can get close
to zero solely as a result of a random shock. On the other hand, the transition between
market states happens gradually. So only a persistent near-zero value of /| indicates a
market change. Instead of the “raw” indicator /1, therefore, we can use the moving average
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smoothed indicator [;:
=,
Lo = ZO Lt —),
1=l

where M 1is a suitably chosen moving window size.

The purpose of the weights (wr) is two-fold. First, they allow us to scale the intermonth
spreads in the indicator (2.21) by their volatilities, to discount for liquidity-related effects.
Second, it is possible to give more weight to futures prices with shorter maturities if we
believe that the front end of the forward curve “drives” the whole curve. We suggest to take
weights of the form:

_
o, T)

for some y € (0, 1), where o(¢, T) is the day-¢ volatility of the Tth intermonth spread,
suitably estimated. The choice of y for a particular commodity can be data-driven, by a
variant of cross-validation on the basis of historical data. Applications to the oil futures
prices have shown that values of y in the range 0.8 = 0.95 perform quite well.

Another parameter to be chosen is the moving average window M . Choosing M too large
leads to a late signal (oversmoothing), while choosing M too small results in the indicator
being too noisy (undersmoothing). In practice, we have to balance these two factors. For
example, one can use I,(t) for different values of M (“fast” and “slow” moving averages)
at the same time.

The second indicator is based on the Principal Component Analysis of the forward curve.
Recall that the three main movements of a forward curve are the parallel shift, “tilt” and the
change in its curvature, represented by the first three principal components of the forward
curve. When studying transitions from backwardation to contango and vice versa, we are
interested in the movement of the second type, i.e. when the forward prices with short
and long maturities move in the opposite directions. So the second principal component,
corresponding to the “tilt” in the forward curve, can be used to construct a change indicator.

To get rid of the dominant parallel shift component, we first remove the average day-¢
forward price F(¢) and consider F(t,T) = F(, T)/F(t) (all F(1, T) are scaled to have
mean one, for any date ¢). Then the first principal component of (I:" (t, T))r=1,..n cotre-
sponds to the slope of the forward curve, as shown in Figure 2.11, which depicts the first
two principal components of (ﬁ @& T))r=1...N-

We define the principal component indicator by

N
L) =Y LYF.T). (2.22)
T=1

where L(Tl), T=1,..,N are the loadings of the first principal component of
(F(t,T))r=1...n (shown on the left plot in Figure 2.11). Note that the equation (2.22)

,,,,,
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Figure 2.11 First two principal components of (F(t, T)r

component. The corresponding moving average smoothed indicator is then
| M-l
Lo = ZO Lt — i),

with a suitably chosen moving window length M.

Indicators 7; and I, (and their moving average smoothed versions) can be computed
daily and monitored for detecting a switch between backwardation and contango. Loosely
speaking, values of indicators close to zero (i.e. in some critical e-neighborhood of zero)
signal a possible switch. A critical value of ¢ can be specified via the distribution (empirical
or theoretical) of the indicators under the null-hypothesis of no change. Alternatively, sim-
ulation techniques called the smooth stationary bootstrap, introduced in Borovkova (2004),
can be used to construct critical regions for the indicators.

For seasonal commodities, the most prominent feature of the forward curve is the maturity-
related seasonality, summarized in the seasonal premia (s(M ))y=1.....12. The deseasonalized
forward curve (F(t, T)e*M); can exhibit features similar to backwardation or contango,
or show deviations from the expected seasonal pattern. So for seasonal commodities, we
define both indicators /| and I, in relation to the deseasonalized forward curve (F(¢,
T)e~*D)r. More precisely, the weighted strength indicator 1(¢) is defined again by (2.21),
with Y (¢, T) being the intermonth spreads of the deseasonalized forward curve and with
weights (w(T))r reflecting particular features of a commodity. For instance, the weights
for a few shorter maturities can be chosen higher than all others, to reflect most significant
deviations occurring in the front end of the forward curve. The principal component indi-
cator is defined as the projection of the deseasonalized (and discounted by F(¢)) forward
curve F(1, T) = F(t, T)e™*T) /F(t) on the first principal component of (F(t,T))r.

These indicators can be used in the same way as for non-seasonal commodities, monitoring
changes between an overall backwardation or contango state of the forward market, while
still allowing for seasonalities. In markets where there is no significant slope in the forward
curve (such as the case for shorter forward curves, e.g. for maturities up to 12 months), the
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expected deseazonalized forward curve should be approximately flat. Then both indicators
(and, to a lesser degree, the projection of the forward curve on the curvature principal
component) measure the forward curve’s deviations from the flat shape. This means that
values of the indicators far from zero (e.g., outside 95 % confidence bounds around zero)
indicate significant deviations of the forward curve from the expected shape given by the
dominant seasonal component.

Figure 2.12 shows the Principal Component Indicator for the UK Natural Gas futures
prices (01.04.01 01.04.08), together with its overall historical 95 % confidence intervals
around zero.

There are several periods when the indicator leaves its 95 % confidence bounds. During
these periods, there are significant deviations of the futures prices from the seasonal pattern.
For example, around the 1500th observation (March 2007) the indicator values are very
high, meaning that during this period a prominent backwardation shape was detected in the
forward curve. Such extreme situations are clearly not persistent, so this information can be
used for constructing profitable trading strategies.

Tracking the indicators for seasonal commodities can be useful for monitoring futures
markets, detecting shifts in fundamentals or possible mispricing of some futures. Trading
signals can be generated when the indicators exceed some pre-determined threshold, gener-
ated from either historical data or simulations. In the absence of delivery issues, a simple
speculative trading strategy during periods of high (and positive) indicator values could be
to sell futures with closer expiries, buy futures expiring later, and close all the positions as
soon as the indicator returns inside the threshold bounds. The size of the future’s positions
can be made proportional to the principal component loadings. The risk exposure of such
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Figure 2.12 Principal Component Indicator for NG futures, 01.04.01-01.04.08
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a trading strategy is due to calendar spreads and not to the outright futures prices, which
leads to a quite low value-at-risk.

Other (possibly more sophisticated) trading strategies are feasible. For instance, one can
also involve the curvature principle component, to actively trade in the middle of the forward
curve (middle maturities), in addition to short and long maturities. Additionally, one can
exploit autocorrelations present in the daily indicator series: a predictive model (such as an
autoregressive one) can be fitted to the historical indicator series and used for forecasting.
Generally, the forward curve indicators (together with the estimated seasonal premia) provide
valuable information about the state of the futures market and economic fundamentals.

2.6 CONCLUSIONS

Forward curves are of paramount importance in commodity markets. They are essential
for financial and physical asset pricing and production planning decisions as they provide
information about anticipated price trends. Forward curves obtained from liquid futures mar-
kets are essential tools for marking portfolio positions to market and calibrating derivatives
pricing models under the risk-adjusted probability measure. Dynamic modelling of forward
curves is a challenging task for researchers and practitioners, due to the multi-dimensionality
of the problem and particularly complex empirical features of forward curves observed in
the markets.

Traditional cost-of-carry arguments are only partially successful in modelling energy for-
ward curves. This is because, on the one hand, the spot price is not always a good image of
the current market conditions and, on the other hand, a maturity-independent convenience
yield fails to capture seasonal effects often present in energy forward curves. The seasonal
forward curve model overcomes both limitations and is capable of capturing prominent char-
acteristic features of seasonal forward curves. The generalized seasonal forward curve model
introduced here incorporates the existence of non-seasonal trends in forward prices, while
still preserving seasonalities. It is a three-factor model, both parsimonious and sufficiently
rich to generate realistic forward curves.
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Integrating Physical and Financial Risk

Management in Supply Management

Paul R. Kleindorfer

3.1 INTRODUCTION

This chapter provides a brief survey of recent contributions to the use of options and other
derivative contract forms in support of commodity hedging and supply management in B2B
markets. Such derivatives play an important role in integrating long-term and short-term
contracting between multiple buyers and sellers in commodity markets. A primary question
of interest in this context is hedging commodity risk exposure associated with commodity
procurement decisions. In the usual context, Sellers compete to supply Buyers in a market
in which, in the short run, capacities and technologies are fixed. Buyers can reserve capacity
through contracts for physical delivery obtained from any Seller, and Buyers can also hedge
these contracts through financial contracts on the same underlying indices from financial
intermediaries. Output on the day can be either obtained through executing such contracts
or in the associated spot market. Such contract-spot markets have become prominent under
e-commerce (e.g. Geman, 2005), and include commodity chemicals, electric power, natural
gas, metals, plastics, agricultural products, and basic foodstuffs.

Prior to the emergence of B2B exchanges and the contracting innovations of interest
here, the focus in procurement and supply management was on bilateral negotiation, which
gave rise to an extensive literature on various idiosyncratic aspects of contracting (see
Cachon (2003) for a review). The point of departure in this chapter is that contracting,
screening, and supplier management will remain essential elements of supply chain man-
agement, and especially for non-codifiable goods and transactions.! However, the existence
of exchanges has introduced a fine-tuning mechanism that improves operational perfor-
mance and simultaneously helps to value longer-term contractual, capacity and technology
decisions. The vortex or center point of this new perspective is the integration of traditional
forms of contracting with shorter term market-driven transactions and associated derivative
instruments.

Paul Kleindorfer is Anheuser-Busch Professor of Management Science (Emeritus), University of Pennsylvania and
Distinguished Research Professor, INSEAD.

! See Kogut and Zander (1992) for a discussion of codifiability of transactions. The essential ingredient for tradable
contracts is that these be standardized, both in terms of terminology and financial terms as well as for the underlying
product or service that is the focus of these contracts. Off-grade or customized products may still be codifiable,
but they may cease to be suitable for broad market-based transactions if they are only used by a few companies. In
this case, however, these customized products may have prices sufficiently correlated with basic tradable products
of the same family to allow financial hedging. More on this subject below.
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Before embarking on our review of previous results in this area, it is important to under-
stand the typical organizational context surrounding contracting and spot market purchases.
A common feature of markets supporting commodity procurement for major buyers is the
following. Any particular buyer has a limited set of sellers who compete for the buyer’s
business in the contract market, while still having access to a larger set (often a much larger
set) who compete in the shorter-term market (the spot market) and whose actions deter-
mine a competitive spot market price. Contract sellers for a particular buyer are restricted
to a pre-qualified set that is able to satisfy credit and settlement requirements, assurance
of supply, access to supporting logistics, and other traditional supplier management issues.
These features give rise to a setting in which buyers have restricted seller bases (of perhaps
1-5 pre-qualified contract sellers) in their contract markets, while using spot markets as
a second source of supply as well as a means of hedging their physical procurement and
evaluating the price levels they receive in their contract purchases. The interaction between
contracting, spot market purchases, and hedging is thus of interest in the optimal portfolio
of contracts and sellers for a buyer, as well as providing an interdependent valuation and
hedging process.

Consider the beverage industry. Aluminum is an important element of the cost structure.
For major buyers like Anheuser Busch, a restricted set of sellers is used, even though the
aluminum spot market price is a key benchmark for sourcing and hedging and is determined
by the actions of scores of global players. Here, sourcing arrangements with main sellers
are typically set according to the spot price plus processing costs, and contracts are marked
to market on a daily basis. Second, there may be value-added services undertaken by these
contractors to take aluminum ingots and prepare them in a more suitable fashion for can
production, and again here this would be done only with specifications for these services
worked out with a few sellers. Thus, the typical setup in metals is for a restricted set of
contract sellers, with spot purchases and hedging used to “top up” contract purchases or
hedge overall cash flows associated with aluminum procurement.

As a second example, consider the restructured electricity market, where producing Sell-
ers (Generators) and Buyers (Load Serving Entities and Distribution Companies) can sign
bilateral contracts to cover the demands of their retail and wholesale customers. These bilat-
eral contracts may cover purchases for up to a year in advance. Alternatively, Sellers and
Buyers can interact “on the day” in a spot market. How much of their respective capacity
and demand Sellers and Buyers should or will contract for in the bilateral contracting mar-
ket, and how much they will leave open for spot transactions, is a fundamental question
examined in a growing literature on energy trading (e.g., Clewlow and Strickland, 2000;
Kleindorfer and Li, 2005). The same general market structure obtains in many other mar-
kets, from cocoa and sugar, to natural gas, to logistics, to plastics and to the commodity
end of semiconductor devices (see Kleindorfer and Wu (2003), Geman (2005), and other
chapters in this volume for a review of applications). It is the purpose of this chapter to
provide some perspective on the theory and practice that is now maturing in companies
with major commodity exposures to integrate physical and financial risk management in
improving both their buying performance of major inputs (through better price discovery)
and the quality of their earnings (through better risk management).

The chapter proceeds as follows. The next section briefly reviews some of the background
literature on optimal contracting and options theory. Section 3.3 presents a simple model-
ing framework and an example of short-term and long-term contracting to introduce the
subject. Section 3.4 follows with a survey of recent contributions in the literature, focusing
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primarily on the management science and operations research literature (which has been the
primary outlet for work on supply management). In the process, we review recent innova-
tive methodological applications (from real options theory and financial engineering) in this
domain to provide an integrative perspective on these methodologies. Section 3.5 points to
some important open research questions that surround this area of e-Business.

3.2 A PRIMER ON PREVIOUS SUPPLY MANAGEMENT
CONTRACTING LITERATURE

The literature on contracting in economics has been driven by the transactions cost frame-
work developed by Coase (1937), Klein et al. (1978), and Williamson (1985), and subse-
quently formalized in the Principal-Agent literature (Laffont and Tirole, 1998). The basic
hypothesis of this approach is that transactions with one or more Buyers will be struc-
tured so as to minimize the total production and transactions cost of these transactions,
including contracting, incentive, and monitoring costs. One of the key elements of B2B
markets is arguably the reduction in transactions cost associated with automating transac-
tions and providing appropriate IT platforms to support these (Kaplan and Sawhney, 2000).
These problems are usually modeled in a context in which relationship-specific investments
are required for efficient contracting, and such investments become the subject of hold-up
behavior (what Williamson terms “ex post opportunism™) after they are made. Clearly,
a well-specified ex ante contract with verifiable information, as suggested by Williamson
(1985), can be an important element in reducing these incentives.

A key question addressed in the economics literature has been the efficiency of various
contracting structures. A well-known result in the economics contracting literature is Allaz
and Vila (1993), which examines the efficiency of pure forward contracts in an oligopoly
setting but with a deterministic spot market (which is fixed and common knowledge). Assum-
ing homogeneous Sellers and instantaneous scalability (with no capacity limitations), they
provide an important benchmark on the factors that can influence the efficiency of for-
ward markets. Allaz and Villa show that forward markets can yield inefficient outcomes
because of strategic use of these markets by Sellers with market power. These results have
been extended and generalized in Kamat and Oren (2002), and recently for optimal trading
policies by Martinez-de-Albeniz and Simé6n (2007).

Of course, the basic results from financial economics provide the underlying analytical
framework for derivative instruments in the contracting markets of interest. The classic
papers in this area are Bachelier (1900) and Black and Scholes (1973) (see Geman 2005 for
a survey of more recent advances). The essential characteristics of the financial engineer-
ing modeling in the literature on derivative instruments include: continuous time stochastic
dynamics for the underlying spot price; and on-going trading opportunities among market
participants for the derivatives based on standard contracts. Option instruments and valu-
ation models allow for different degrees of flexibility with regard to execution, including
fixed expiration dates (European options), flexible expiration dates (American options), and
various exotic options, such as Asian options that have payoffs based on average spot per-
formance over a given period (Merton 1990). Each of these options forms, either in markets
or in contracts, has found important applications in supply risk management.

In the context of supply chain contracting, an additional distinction is required in the
types of options involved, between purely financial options and those connected to physical
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delivery of a particular good at a particular time and place. The early discussion and literature
was focused on physical delivery options to fulfill a Buyer’s sourcing needs. These options
would entail delivery at a particular time and place (e.g. FOB Pittsburgh). In these markets,
options backed by physical delivery are central to the Buyer’s problem of arranging for
sufficient supply to meet the Buyer’s demand. However, once a functioning spot market
exists, this market can be used to define financial options on the basis of the spot price.
Major Buyers would then find it in their interest not only to arrange optimal sourcing from
the contract and spot markets, for physical delivery of goods, but also to use the financial
options defined in the market as risk hedge instruments. Thus, in livestock or grain markets,
options serve both the purpose of fulfilling sourcing requirements for Buyers, but the same
markets allow price discovery through active parallel trading of options for purely financial
hedging purposes. It is this mix of physical and financial instruments that characterizes well
functioning and liquid spot markets. Normally, the mix of options in such markets going
to physical delivery is low, perhaps on the order of 1 % of total transactions, the remaining
trading being purely financial to hedge residual risk.

A key factor influencing the incentives of Sellers and the Buyer to sign contracts is the
existence of imperfect market access on the day, capturing possible access inefficiencies
of the spot market, including cost and quality differences between contract markets and
the spot market. In addition, in supply management for commodities, different grades and
specifications for commodities often require prior contracting and procurement relations.
These alternative situations give rise to various forms of commodity risk management, as
shown in Table 3.1.

The standard problem of commodity sourcing and hedging (CSH) for a Buyer can be
stated as follows:

Maximize E{I1(Q, D, P)} (CSH)

Table 3.1 Alternative contexts for commodity risk management of supply

Description of context

Instruments used in optimal
portfolio

Examples

Cost and access differences
small and only standard
commodities are sourced

Cost and access differences
are large and only standard
commodities are sourced

Non-standard commodities
are sourced, but their
prices are highly
correlated with those of
standard commodities

Bilateral contracting and
financial hedge instruments
are defined on a common
spot market and optimized
jointly

Bilateral contracting used for
most physical procurement,
with spot market used for
topping up supply, and for
financial hedge instruments

Bilateral contracting used for
all physical procurement,
with financial hedge
instruments, defined on
correlated standard
products, used as an overlay

Energy Commodity metals

Logistics services (standard
air and maritime cargo)

Fed-cattle (beef), hogs and
lamb markets

Plastic resins and commodity
chemicals
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subject to:

G(Q, Fp, Fp,) 2 0 Physical Delivery Constraints
H(Q, Fp, Fp,) > 0 Value-at-Risk Constraints
QeX Other Constraints on Available Instruments

where the maximization in (CSH) is over the vector of available financial and physical
instruments Q at the time of contracting, where “demand” uncertainties are represented by
D and where spot price uncertainty is represented by the random variable P;, with respective
cdf’s of Fp and F pg;. On the day, of course, once D and P; are observed, instruments are
executed to fulfill the physical delivery constraints and to optimize profits by executing all
options that are “in the money” or needed for physical fulfillment. This problem “on the
day” can sometimes be interesting, but in theory it is straightforward. The problem of setting
up and solving the overall portfolio problem integrating financial and physical instruments
is less straightforward and typically sufficiently complicated that simulation vehicles must
be used for valuation and optimization. Various forms of the (CSH) problem have been
developed for various types of markets, and the details for these differ considerably across
these markets.
The VaR constraint in (CSH) is usually represented as:

Pr{[1(Q, D, P;) — F > —VaR} > y

where T1(Q, D, P,) are the cash flows resulting from the vector of contracts Q, where F
represents fixed capital payment obligations, and VaR is the maximal Value-at-Risk allowed
for the period in question, with confidence level y (see and Marshall and Siegel (1997) and
Crouhy et al. (2000) for a discussion of VaR). In the case where the normality assumption
is reasonable for I1(Q, [), 155), this standard VaR constraint translates into a simple func-
tion of the mean and standard deviation of T1(Q, D, P,). Finding the efficient frontier (in
E{IT}-VaR space) is then easily solved in the standard fashion via mathematical program-
ming or simulation optimization techniques. Multi-period VaR constraints are also discussed
in Kleindorfer and Li (2005) and Geman and Ohana (2008). For more complex problems,
including sophisticated models of the evolution of the spot price and various exotic options,
simulation can be used to tackle a wide variety of problems that arise in practice.

3.3 A MODELING FRAMEWORK AND A SIMPLE
ILLUSTRATIVE CASE?

To gain some intuition, let us first consider the simplest case in which a Buyer can satisfy
demand D in a particular period by purchasing input using either forward contracts (from
pre-qualified Sellers) at a cost of r/unit or on a spot market at a cost of P/unit. It is
easiest to think of the input in the simplest Non-storable Uniform Product Model (e.g.
hotel rooms of a particular type for a particular day of the year). We imagine the Buyer’s
decision problem at the time the choice is made on the appropriate mix of these alternative
procurement arrangements (which is to say at the time the Buyer is deciding on how much

2 This is a simplified example based on Wu and Kleindorfer (2005) to motivate the review to follow while still
highlighting the critical determinants of the SCM contracting literature.
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input to purchase under forward contracts). At this point in time, we assume that the Buyer’s
demand D and spot price P are both random variables with known distributions, whose
actual realizations will be known at the time when spot purchases are made. We assume
that product sold under forward contract is slightly better in the sense that to achieve the
same yield from a spot purchase requires an additional cost of a/unit, a > 0, of input
processed. Let us also suppose that the Buyer can sell back to the spot market at the spot
price P any of the input it purchases under a forward contract that is not needed. Finally,
suppose the Buyer expects production costs per unit of input processed to be b/unit and the
Buyer expects to sell output produced at a wholesale price w, where we assume that w > r
> n = E{P}, so that profits can be made at the expected spot price E{P}, and the expected
value of this price is no less than the current going rate for forwards. The Buyer purchases
QO > 0 units under the forward contract and produces D units on the day, purchasing X
= Max [D — Q, 0] units on the spot market and selling X~ = Max [Q — D, 0] units
purchased under the forward contract to the spot market. The Buyer’s profits under this
arrangement would be calculated as follows:

Mp(Q)=(w—b)D—rQ—(P+a)(D— Q)"+ P(Q-D)" (3.1

where z T = Max [z, 0]. The first term is just the gross margin per units sold in the wholesale
market; the second term is the cost of the forward purchases; the third term is the cost of
spot purchases (computed at the full price of P + a); and the final term is the revenue from
excess forwards sold in the spot market. This simplifies to:

Np(Q)=w—bD—-rQ—P(D~-Q)—aD-Q)" (3.2)

Denoting the cdf of demand D (as estimated at the time of contracting) as Fp(x) and
denoting mean spot price as u = E{P}, a little calculus shows that this standard Newsvendor
problem (see Cachon (2003)) reduces to the following rule for the optimal portfolio of
marketing arrangements (i.e., the optimal mix of forward and spot purchases):

I: 0=0, X"=D, X =0 ifr>zu+a
I: 0*>0, XtT=(D -0, X~ =(Q*-D)*" ifr<u-+a (3.3)

a—(r—p)
—

where Q* is given as Fp(Q*) = Pr{D < Q*} =

Thus, regime I entails purchases only in the spot market, while regime II entails non-zero
purchases in both the spot and forward markets. Focussing on regime II, where the expected
full price of spot purchases exceeds the unit cost of the forward (u + a > r), it is easily
seen that the intensity of use of spots versus forwards depends on all the cost and demand
parameters, as well as on the volatility of demand (the latter through the Newsvendor rule
determining Q * as a function of the cost parameters and the cdf of the demand distribution).
In this simple case of a risk-neutral Buyer, only the mean of the spot price distribution enters
into the decision rule. We will see that the volatility of the spot price is also an important
element of the optimal portfolio choice problem when a few additional complexities are
introduced.

The above simple problem can be extended in various ways: by adding risk aversion
or risk constraints (e.g. of the Value-at-Risk or VaR type, as explained in Crouhy et al.
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(2000)); by allowing production decisions to be different than demand decisions; by mod-
eling price sensitivity of the Buyer’s demand; by incorporating economies of scale in the
Buyer’s production function; by introducing capacity constraints and economies of scale for
potential Sellers of forward contracts; by introducing competition into both the contracting
and spot markets; and by considering more complex marketing arrangements. These com-
plexities give rise to changes in the rules for determining the optimal mix of contracting
arrangements, but the basic intuition remains similar to that of the above simple problem,
namely purchasing forwards allows the Buyer and Seller to avoid the risks of price and
demand volatility, but entails risks of its own in terms of opportunity costs of more favor-
able prices in the spot market and the ability to fine tune purchases or sales at the last
minute.

To introduce some of these complexities, let us now consider a slightly more general
version of the above problem, which will allow us then to motivate and summarize the
literature on optimal contracting for commodities. We first describe a three-period time-
line for trading in the B2B exchange, either using contracts or using the spot market (see
Fig. 3.1). The reader can think of this as setting up the physical and financial contracting
to solve the problem (CSH) for next month’s or next quarter’s procurement of a particular
Buyer’s production needs for some specific commodity input (e.g. aluminum or electric
power).

Period 0: Before the fact, at Period 0, capacity and technology choices are made by Buyers
and Sellers. As we will see, these choices will be different when rational managers know
that they can fine-tune demand and supply through the spot market than when such a
possibility does not exist.

Period 1: At Period 1, with updated information on the distribution of spot prices, Sellers
and Buyers contract with one another, using options and forwards, for delivery of some
good (either storable or non-storable) at Period 2.

Period 2: Finally, at Period 2, after possibly additional information updating, options are
called, forwards are executed, deliveries are made and additional sales and purchases are
made in the short-term spot (or cash) market.

Between Period 1 and Period 2, there may be additional trading of options and additional,
possibly continuous, updating of information on spot prices. In this brief review, to keep
matters simple, we will assume a discrete-time framework with no secondary trading. Thus,
we will only be concerned with the indicated decision instants Period 0, 1, and 2.

We characterize the technology of each Seller by the triple (b, 8, K), where b is the
Seller’s short-run marginal cost of providing a unit of output, B is the per unit/per period
capacity cost (assumed pre-committed prior to contracting at 7;) and K is the Seller’s total

Information Revelation Information Revelation
_t ty to
Capacity Contracting Short-term/Spot
Technology Trading Procurement and
Choices Production

Figure 3.1 Decision timeline for Seller(s) and Buyer(s)
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available capacity, assumed fixed in the short-run (i.e. at the time contracting decisions are
made).?

There may also be differences in the cost of finishing and transporting a unit of product to
market depending on whether a forward contract is used, providing ample time for the Seller
to plan for the fulfillment requirements, or whether the spot is used. In addition to these
“production cost” differences, there may also be additional costs for the Buyer (these are
referred to as “adaptation costs”, denoted by “a” in the model (1)—(3) above) if purchasing
product in the spot market rather than under planned contracts. The reader might think of
these as off-spec quality or yield costs that are typically higher under spot purchases than
under pre-planned contract and alliance purchases.

Contracts between Sellers and Buyers can take many forms in this model, depending on
the amount of quantity flexibility involved and who has decision rights over it. It is useful
to begin the analysis by assuming only a single aggregate Buyer.* We will also consider
only forwards and call options, with the call option execution being in the hands of Buyers,
in order to keep matters simple. The decision variables for Sellers are the optimal contracts
of the form [r, e, L] to offer to the Buyer, where L is the number of units offered, r is
the reservation or contract cost per unit of capacity, and e is the execution cost per unit of
output. Thus, if e = 0, then the contract is a pure forward as units ordered will have been
paid for in advance with a fixed price r; if e>0, the contract is an options contract. One
can also think of r as the pre-paid part of a fixed forward and e as the additional part of the
unit forward price paid on the day of delivery (e.g. for transportation and processing costs).
We will take both r and e to be fixed, though they could themselves be state-dependent or
random (for example, the execution price might be defined as the additional cost of delivery
on the day, and these might not be known except stochastically until the day of delivery).

The decision variables for the Buyer are how much to contract Q at Period 1 with each
Seller, and at Period 2, how much to execute from the contract (denoted ¢) and how much to
procure from the spot market (with spot market purchases denoted by x). The (distribution
of) Buyer’s total demand D on the day (at Period 2) is assumed to be common knowledge.
Whatever its demand D is (which may depend on price in its own final markets and on
other variables), the Buyer will attempt to fill this demand from its contract(s) and from the
spot market at minimum cost. For example, if the Buyer only has one contract [r, e, O],
and is choosing how much of this to execute versus filling demand from the spot market, it
is easy to see that the cost-minimizing fulfillment strategy is to order the following quantity
from his contract:

q(Ps, D, Q,e) = MINID, Q1Y (Ps —e) < Q (3.4)

3 See Martinez-de-Albeniz and Simchi-Levi (2005) for an analysis of the case in which capacity decisions are
made at the same time as contracting decisions, as might be the case for some leasing decisions. The results for
this case are quite similar to those derived by Crew and Kleindorfer (1976) for the diverse technology pricing
and capacity problem in public enterprise pricing. Intuitively, the optimal capacity/contracting choices embody
tradeoffs between the volatility of future demand and the capacity and variable costs that must be committed at
the time of contracting to meet this demand. The results imply that high capacity costs and low variable cost
capacity should be used to meet the first slice of contract demand, that the next highest capacity costs and next
lower variable cost capacity should be used to meet the next slice of contract demand, and so forth. This is similar
to the outcome in terms of the optimal amounts of generating plants of different types to be installed in electric
power planning to meet an uncertain demand over the long run.

4 The assumption of a single Buyer is without loss of generality in understanding equilibrium prices and contracts,
provided there is no market power by Buyers. This is so since Buyers can simply be ranked according to their
Willingness-to-Pay and awarded capacity accordingly, as would happen for example under an auction mechanism
or other efficient market design.
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where P is the spot price on the day and where 1(z) is the indicator function which takes
the value of [ if its argument z is positive and 0 otherwise. This means that if e = 0, then
q = Min [D, Q] will be taken under (what is then effectively) a forward contract.

The spot market price P, is uncertain before it is revealed in Period 2. The spot market
price is assumed here to be exogenous (open, competitive) and not subject to the influence
of any of the contract market participants. The distribution function of the spot price is
denoted f(p) with mean u = E{P}; f(p) also assumed to be common knowledge.

The objective of the Buyer is to maximize expected profit by choosing among the available
forward and spot contracts. The objective of the Seller is to maximize expected profit, jointly
obtained from sales in both the contract market and the spot market and subject to the Seller’s
capacity constraint. Either Buyer or Sellers may have additional risk-based constraints on
their transactions, such as those derived from a Value-at-Risk framework. We will consider
these risk-related issues further below.

A key factor influencing the incentives of Sellers and the Buyer to sign contracts is the
existence of imperfect market access on the day, capturing possible access inefficiencies of
the spot market via a function m(P;), which is defined as the probability that the Seller can
find a last-minute Buyer on the spot market when the realized spot price is P. This market
access probability can also be thought of as the proportion of the Seller’s capacity that can
be typically sold at the last minute. This function will be determined by different factors
in different market settings but generally may be thought of as a measure of the liquidity
of the market. When quality issues are present (which we will not formally analyze here)
then m(P;) might also reflect the quality risk associated with spot purchases. We will use
another approach, discussed below, to represent such quality risks.

As an instance of the above framework, consider the simplest case of a single risk-neutral
Seller and a single risk-neutral Buyer,’ and we assume no adaptation cost and no con-
tract/spot production cost differences.

The Buyer’s problem at Period 1 is to determine the optimal number of options, Q to
contract for with the Seller, taking into consideration the Buyer’s demand at Period 2. To
find Q, the Buyer solves the problem using backward induction. At Period 2, the Buyer
derives its optimal demand. If only the spot or cash market were available, then the Buyer’s
demand function at Period 2 would be given by the normal downward sloping demand

curve,?

Dy(Py) = arg max [U(Ds) — PyDy] = (U™ (Py) (3.5)

where U (D) represents the profit to the Buyer from producing and selling D units, with
first derivative U’ and with inverse function (U’)~!, with U assumed to be strictly concave
and increasing (this basically says that the normal demand curve D (p) at Period 2 is
downward sloping). In the presence of contract procurement Q, the Buyer’s actual optimal
demand curve on the day is seen to be kinked, accounting for the presence of the contract

3 The consequences of risk aversion are intuitive. While the equilibrium results for integrated contracting and
options markets have, to my knowledge, not been worked out at this point, as the reader can anticipate, risk
aversion would tend to increase reliance by the respective party on the contract market rather than being exposed
to the price volatility and access risk of the spot market.

% We are assuming here that the Buyer’s demand curve is only a function of the prevailing price. More generally,
the Buyer’s WTP/Profit function U would depend on the state of the world, namely on external factors such as
economic conditions, the weather, etc. For details on this more general case, see Spinler et al. (2003).
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fulfillment, with the solution:
D = MAX[Dy(Py), Q] = MAX[(U")~'(Py), Q] (3.6)

At Period 1, the Buyer’s problem is to contract a reservation level Q so as to maximize
its expected profits from contracts and spot procurement, given spot purchase opportunities
that will be available on the day. This gives rise to the following problem:

Maximizeg>o E{U(D) —rQ —rq — Pyx} 3.7

with ¢ as specified in (3.4) above, x = D — g = spot purchases, and D given by Eq. (3.6)
above.

In Eq. (3.7), the first term is Willingness-To-Pay (WTP) (or profits) at P, evaluated at
the realized demand D; the second and the third term together are the payment for the
goods delivered under the long-term contract, and the fourth term is the payment for goods
x purchased in the spot market. One sees in Eq. (3.7) the nature of the general problem
facing a Buyer with choices in several markets (in this case in the contract market and in
the spot or cash market). The Buyer is interested in maximizing profits from sales in its own
market. The Buyer can utilize a long-term marketing arrangement (in this case represented
by Q) as well as a shorter-term marketing arrangement (in this case represented by x). The
Buyer executes his rights to buy ¢ units under the contract Q at some “call date” and buys
on the spot or cash market remaining units needed to cover profit-maximizing demand. The
Buyer must anticipate the required demand and the dynamics of this process at the time he
signs contracts. In the process, the Buyer will be comparing the cost of signing a contract
with the (as yet unknown) price of spot purchases. The distribution of P and all of the
underlying cost and technology conditions determining profits U (D) are assumed known to
the Buyer as a part of solving the above problem (3.7).

It can be shown (e.g. Wu and Kleindorfer (2005)) that the Buyer’s optimal procurement
strategy is to reserve the following number of units Q under contract:

Q(r.e) = Dy(G™'(r + G(e)) = U ' (r + G(e)) (3.8)
at Period 1, where G(p), called the “effective price function”, is defined as
G(p) = E{MIN[P;, pl} (3.9)

and where G~!(g) is the inverse function of G(p). It is easily shown, and intuitive, that
Q(r, e) is decreasing in both of its arguments. We note in passing that the effective price
function G(e) captures the notion of the expected price that the Buyer will have to pay
for an additional unit of supply if they have the option of purchasing under contract the
additional unit at an execution price of e. If e = 0, as in the case of a pure forward contract,
then G(0) = E{P,}, the mean spot price.

At Period 2, the optimal strategy for the Buyer is rather simple: If P; > e, the Buyer will
exercise all its options/contracts and procure any additional needs from the spot market.
Otherwise if Py < e, the Buyer will forgo its contracts but procure its entire needs from
the spot market. If e = 0, the case of a pure forward, the Buyer will always “accept” the
full forward contract. [Note: Many other cases are possible, with salvage values, penalties
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for not accepting deliveries of forwards, buy-back arrangements, minimum take quantities,
etc. Most of these turn out to be special cases of the above general framework.]

One can invert Eq. (3.9) to obtain the price the Buyer is willing to pay per unit for a
contract with reservation price r and execution price e, namely:

r=GU'(Q) —Gl(e) (3.10)

Note that the conventional wisdom of r = E{P;} — e =  — e does not hold here, as the
Seller can only sell a percentage of his capacity if he only wants to sell at the last minute
(Period 2). If he wants to sell in the contract market in advance at Period 1, he has to sell
at a price less than u — e in order for the Buyer to be interested.

Taking the Buyer’s optimal response into consideration, the Seller’s problem is to max-
imize his expected profit (neglecting fixed capacity investment, which is assumed fixed in
this model) at Period 1 by bidding a contract in the form of [r, ¢], i.e.

Maximize ;.e)>0 E{r Q(r, ) + (¢ — b)q + (P; — b) 'm(Py)(K — ¢))} (3.11)
Subject to: g(Ps, D, Q, e) as in (3.4); Q(r, e) as in (3.8).

where it is assumed that non-performance penalties are sufficiently high that the Seller does
not sell under contract any more output than he has (i.e. (r, e) are set so that Q(r, e) < K is
assumed).” In the Seller’s profit function, the first two terms represent the Seller’s revenue
from the contract, the third term is the Seller’s cost of supplying ¢ units to the Buyer, and
the fourth term is the Seller’s profit from the spot market.

Under weak regularity assumptions, it is straightforward to show that the Seller’s optimal
strategy is to bid its unit production cost (¢ = b), and then setting r by maximizing its
expected profit (3.11) given e = b. The actual solution for the optimal reservation price r
depends on whether the Buyer exhausts the Seller’s capacity or not. The explicit solution is
as follows (assuming that there is no competition in the Seller market, i.e. only one Seller):
if Q(r, e) < K, then r* is proportional to the Seller’s opportunity cost E{m(P)(Ps; —
b)T} of selling a unit in the spot market and inversely proportional to the Buyer’s demand
elasticity at the optimal reservation demand formula Q(r, e) given by Eq. (3.5), i.e. if Q(r,
e) = Q(r, b) < K, then

_ E{m(P)(P; —b)*}
T 1L=1/n(Q(r, b))’

where 71,(Q) is the elasticity of Q(r, e) with respect tor (i.e., n, (Q) = [0Q(r, e)/or][r/Q(r,
e)]). If the solution to Eq. (3.12) yields a value of r such that at e = b, Q(r, e¢) > K, then
r should be set to take additional rents from the Buyer by charging a reservation price r
just high enough to equate Q and K. From Eq. (3.9), this occurs at:

Q<K (3.12)

r=GWU'(K)—Gb); Q=K (3.13)

Why do the Seller and Buyer have the incentive to use the contract market even when
they are both risk neutral? Consider first the Buyer. At Period 1, the Buyer is paying an

7 Models assuming that the Seller may “overbook™ are also common in the literature, e.g., where a penalty is paid
by the Seller for each unfulfilled but contracted unit demanded on the day.
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overall price less than the average spot market price, since (it can be shown) r + G(b)
= GU'(Q)) < GU'(0)) < w. The Seller is also willing to sell this option, since he is
making more profit in the contract market than in the spot market per unit of capacity as
long as r > E{m(P,)(P; — b)*}, which also can be shown to be his minimum requirement
to participate in the options market. The Buyer is willing to buy this option as long as the
combined price r + G(b) is less than mean spot price w. Thus, for risk neutral traders, the
active contract market trading spread lies between E{m(P,)(Py; — b)T} < r < G(U'(0))
— G() < u — G(b). An increase in m(P;), which may be thought of as increased spot
market liquidity, effectively shrinks the trade spread, even to the extent of suppressing
the contract market entirely. Indeed, in this simple model, with no adaptation or production
cost differences between spot and contract market production, when m(P) = 1, the contract
market disappears.

We may extend the base model to allow contract production to be cheaper than spot pro-
duction, reflecting the benefits of advanced planning. Thus, assume that contract production
has variable cost b, and spot production has variable cost by with b, < b < b,. Then the
above options trade spread stretches in both ways,

E{m(Py)(Ps — b)) T} < E{m(P)(P, —b)T} < GWU'(0) —GMb) < p— Gb)<p — G(be)
(3.14)

indicating a stronger incentive for both parties to contract. In particular, even when the
Seller has a perfect market access with m = I, he still engages in long-term contracting,
as well as spot purchases, trading as long as by > b,.

We have focussed in the above discussion only on production cost differences, but similar
results would obtain if the Buyer had to pay additional adaptation costs (i.e. with an eye
on (1)-(2), when a > 0) when procuring at the last minute from the spot market relative
to contract purchases. These effects might derive from better quality control, better yield
management, better planning of capacity, any other advantages deriving from the longer-term
planning and partnering inherent in contract versus spot procurement. On the other side of
the coin, there may be additional costs to set up and negotiate contract procurement and
these would obviously work to the advantage of spot procurement.

3.4 RECENT CONTRIBUTIONS TO THE OPTIMAL
CONTRACTING LITERATURE

This section summarizes research on supply chain contracting and financial hedging related
to the modeling of options trading and integrating contracting via B2B exchanges.

Araman et al. (2001) consider a Buyer who can procure from a Seller either via a contract,
an internet exchange (spot market), or a combination of both. Their contract is a pure forward
(execution price = 0) with a penalty if the Buyer does not call the fully reserved capacity
with the Seller on the day. Thus, the spot market (the exchange) is only used to fulfill the
residual demand after the reserved capacity has been used fully. They show that the spot
market is beneficial from the Buyer’s perspective, that both contracting and the spot market
are sustainable, and that a mix between these two is optimal.

Spinler et al. (2003) generalize the single-Seller results of Wu ef al. (2002) to the state-
dependent case, whereby the WTP functions characterizing demand for Buyers could them-
selves depend on the state of the world (e.g., both demand and spot price might depend on
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temperature). They show the optimal Wu et al. (2002) structure basically goes through, but
the results are more complicated, where the demand for options by the Buyer depends on
the correlation between Buyer demand and spot price.

Mendelson and Tunca (2007) provide an important generalization of Wu et al. (2002) to
the case of a closed spot market, where spot market price is determined endogenously (in
a single Seller context). That is, the more capacity is withheld from the contracting market
for sale in the spot market, the lower the resulting spot price distribution. Within this closed
spot market framework, they focus on the impact of establishing the spot market (B2B
exchange), where the Seller plays the role of Stackelberg leader. They derive necessary
and sufficient conditions for the existence of the exchange. They analyze the impact of the
exchange on the participants as a function of information quality. A surprising result is
that the introduction of the exchange (m > 0) does not necessarily benefit the participants.
This is because the exchange contributes to price volatility and quantity uncertainty. As
a result, the Seller and the Buyers can all be worse off with the exchange than without,
driving participants away from the exchange (spot market) to contracting. On the other hand,
when the exchange is highly liquid, volatility will not be amplified by the exchange and
Buyers and the Seller will rely completely on the exchange, even to the extent of forgoing
contracting altogether. The corresponding conditions in the framework of Section 3.2 are
when the Seller has perfect spot market access and/or when the cost of assuring codifiability
is low (i.e. m is close to I).

Lee and Whang (2002) consider the impact of the internet-based secondary market, where
Buyers can resell and trade their excess inventory in Period 2. Under the assumption of zero
transaction costs, they show that the introduction of a secondary market always improves
allocative efficiency but the welfare of the supplier may or may not increase.

Peleg et al. (2002) consider a “roll-out” spot market, with demands and purchases occur-
ring at both time periods and unmet demand at Period 1 carried over to Period 2. The
Buyer makes purchases from his current Seller in Period 1 and inventories any excess input
if Period 1 demand does not exhaust the amount ordered. If demand exceeds the amount
ordered, then excess demand is backlogged going into Period 2. At the beginning of Period
2, and prior to observing Period 2 demand, the Buyer may make additional purchases for
delivery “on the day” under one of three arrangements: continued sourcing from the same
Seller as in Period 1 (i.e. use long-term relationship-based strategic partner); an auction
on the spot market (i.e. use a short-term strategy based solely on the use of procurement
auctions); and some combination of both. They show that any of these three strategies can
be optimal depending on the market characteristics (e.g., price distribution of the auction
good) the Buyer is facing as well as the Seller’s technologies. They show, in general, that
internet-based reverse auctions can be beneficial for the Buyer.

Wu and Kleindorfer (2005) capture the interaction of competing technologies with alter-
native market structures, which accommodate both the extent of competition (in terms of the
number of Sellers) as well as the relative cost and access advantages of alternative Sellers.
The essential results in Wu and Kleindorfer (2005) are the following. First, it is shown that
greedy contracting is optimal for the Buyer, i.e., it follows a merit order based on the index
ri + G(b;), where (r;, b;) is the bid of Seller i, with r; being Seller i’s reservation price and
b; is the execution price of i’s contract, where b; is (optimally set at) Seller i’s marginal
cost of supply (per the results of Section 3.2 above). Second, the necessary and sufficient
conditions for market equilibrium are characterized. One key condition is the “law of one
price”, i.e. each Seller who participates in the options market must sell the option at the
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same “effective price” (i.e. the same r; + G(b;)). Third, in the absence of cost advantages
of contract production over spot production, the two-part tariff structure of equilibrium con-
tracts is efficient, while (per Allaz and Vila, 1993) a pure forward contract is not. Note,
however, that the lower-indexed execution-cost contracts in the Buyer’s optimal contract
portfolio (those with the lowest e; = b; will almost always be executed). Indeed, if spot
price P exceeds b; with probability one for some Seller, then the options contract [s;, b;]
is equivalent to a pure forward with parameters [s; + b;, 0].

It is interesting to note that options markets, if competitive, assure efficiency. Complex
flexibility provisions and penalty costs (as in Li and Kouvelis, 1999; Araman et al., 2001)
are not required; the standard options structure with competition achieves efficiency. This
contrasts starkly with the inefficiency of pure forward markets in the well-known result of
Allaz and Vila (1993). The difference here is in contract design; remove the restriction that
contracts must all be pure forwards (e = 0), and the Allaz—Vila forward-market inefficiency
disappears under competition (Wu and Kleindorfer, 2005).

The Wu and Kleindorfer (2005) results have also been generalized to integrate long-term
capacity decisions at Period 0 (see Wu et al., 2005) with contracting and spot market
decisions, where the long-term decisions are modeled in a game theoretic framework with
payoff functions based on the anticipated short-run game among Sellers that will materialize
via the exchange given their capacity decisions. This long-term game illustrates the nature
of efficient technology mixes likely to survive in long-run equilibrium when firms with
heterogeneous cost structures compete, and follows the early work of Crew and Kleindorfer
(1976) on the question of efficient diverse technology choices. The model results show that,
in the long run, Sellers are segmented into four disjoint groups: participation in the options
market only; participation in both the options market and the spot market; participation in
the spot market only; and participation in neither market (those forced out of business). Note
that these results assume the standard proportional bid-tie capacity allocation rule in case of
a Seller bid-tie, namely when several Sellers have the same winning bid price, their capacity
is allocated to Buyers in proportion to the amount of capacity these Sellers have bid into
the market. Different allocation rules can affect the existence and structure of equilibrium
outcomes, as discussed in Wu and Kleindorfer (2005).

Motivated by Williamson’s transactions cost framework, Levi et al. (2003) provide an
explicit modeling of codifiability and relationship-specific investment. Their model intro-
duces fixed (relationship-specific) costs into contracting following Kleindorfer and Knieps
(1982) and brings the following insights into the literature: (1) Underlying technology cost
differences drive higher relationship-based investment; (2) Lower codifiability (in the form
of higher adaptation costs for non-contract procurement) results in overall demand decreases
at market equilibrium, and there is a shift to more intensive use of contracts, but with fewer
Suppliers in the contract market.

3.5 SOME OPEN RESEARCH QUESTIONS AND IMPLICATIONS
FOR PRACTICE

Let me begin by noting some of the practical challenges facing companies and supply
managers who wish to profit from the innovations in risk management described in this
chapter.

Developing the requisite internal capabilities in a company for B2B operations has been
the focus of thousands of papers in trade magazines and the popular press, and more recently
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have been the subject of deeper research. The issues include whether and under what con-
ditions enterprise resource planning (ERP) systems have paid off (Hitt et al., 2002), and
the requirements to achieve fully linked or networked organizations for interacting with
close supply chain partners and arm’s-length market participants. Accomplishing the needed
changes in IT infrastructure to support B2B contracting presents one of the significant chal-
lenges of the past decade, both in terms of innovations in corporate strategy as well as in
changes and improvements in internal processes and their links to the value chain.

In addition to the general challenges of taking advantage of new B2B opportunities via
the web, there are special challenges associated with integrating long-term and short-term
contracting along the lines of this chapter. First and foremost, it is foreign territory for most
organizations to integrate finance and supply management/operations, and this is precisely
what is required in order to have the full benefit of the options approach described here.
Companies wishing to do so must radically expand the traditional focus of procurement
on cost, quality and dependability to include tracking of spot market conditions, valuing
options in operational and hedging terms, and linking these activities to an appropriate risk
management structure. Companies that have done this well have recognized the need to
develop capabilities in trading, data management, and financial reporting and management.
These include new skills in pricing and valuation of contracts, new approaches to managing
the portfolio of sourcing options for key manufacturing inputs, and a very different approach
to supplier and customer segment valuation and management. We consider two examples,
electric power and the fed-cattle (beef) industry, to illustrate these points.

Electric Power An important area of application of these concepts is energy. Kleindorfer
and Li (2005) present a detailed roadmap to implementation of these concepts in electric
power, which we briefly summarize here. They consider the problem facing an electric power
utility, the “Buyer”, that may own or lease generation, and that has a trading division that can
sign contracts for Power Purchase Agreements (PPAs), as well as puts, calls and forwards
based on an underlying wholesale spot market. The Buyer has some retail customers that
are supplied by its wholly owned distribution subsidiary, called the Disco. Retail prices are
regulated, and assumed fixed over the planning horizon of the problem. The Buyer’s problem
is to determine an optimal set of purchasing contracts to fulfill its retail demand obligations
as well as, perhaps, to engage in additional speculative trading for profit. One requirement
arising from regulation is that retail customers must be served by the Disco, either from
the Buyer’s portfolio of owned generation, PPAs and options/forwards, or from the spot
market at the prevailing wholesale price at the time the retail customers make their demand.
It is generally recognized that this feature of customer demand at regulated prices, together
with the weather-driven level of spot prices and the non-storability of electric power, makes
electricity supply a risky business.

This type of problem gives rise to what is known as the optimal portfolio problem for
electric power sourcing. The portfolio in question is characterized by different levels of
time-indexed instruments (puts, calls, forwards, etc.) that might be called upon either to
fulfill retail demand or simply as part of profit-oriented trading/hedging activities by the
Buyer’s trading division. In this framework, owned generation and certain PPAs that have
been pre-committed have a fixed execution price (e.g. the marginal running cost of own
generation), but may be thought of as available at a reservation price of zero. Purchased
forwards, which are prepaid, fixed obligations to deliver power may be viewed as call
options having a zero execution price that therefore will always be executed by the Buyer
on the day. Forwards sold by the Buyer have the same characteristic, i.e. they may be
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viewed as options contracts with a zero execution price (that therefore will be executed on
the day). With these understandings, the options framework developed here envelops all of
the essential contract forms/sources of power that are typically traded or used in existing
electric power markets. Details of recent advances in this area for optimal VaR-constrained
portfolio design are provided in Kleindorfer and Li (2005).

The Beef (Fed-Cattle) Industry Traditional (B2B) contracting models consider a single
homogenous product model where a single unit of input is processed to produce a sin-
gle unit of output. In fed-cattle supply chains, where there are spot markets for beef and
beef products, one unit of input (beef) is processed to produce proportional amounts of
multiple-outputs (hamburger, steak, etc.). The proportional product model can be applied in
several other important markets as well (pork-hog, petroleum). In Boyabatli et al. (2008), ini-
tial results are provided for the proportional product model on the optimal mix of long-term
and short-term (spot) contracting decisions in the context of fed-cattle supply chains. The
paper analyzes the effects of product market volatility, correlation and the proportion of
products on the optimal decisions and performance measures of packers in their choice
of the optimal portfolio of contracts (or marketing arrangements). This research points to
interesting additional resources of risk, and additional roles for commodity derivatives, in
proportional output product structures.

These two examples point to the open questions associated with B2B exchanges and
contracting can be described under two general headings. First, are the needed model-based
developments to capture the essence of the supply—demand coordination problem and the
necessary options-based instruments to achieve efficiency. Second, is the continuing devel-
opment of theory to understand the necessary guidelines for the structure and governance
of sustainable business models for the exchanges.

Concerning model-based developments, only a few results to date have considered multi-
period (dynamic) models, which would allow consideration of inventory and trading of
options in a secondary market between the time they are first signed and their maturation
date. Active trading in such secondary markets is commonplace in well-developed exchanges
and assures such important features as non-arbitrage conditions. Some analytic insights on
dynamic models are available in the work of Goel and Gutierrez (2006) and Milner and
Kouvelis (2007), but evaluation of realistic portfolios remains almost solely in the domain
of simulation.

Open spot markets are markets for which the price is assumed to be independent of
the actions of individual market participants, while the price in closed spot markets may
depend on actions of participants. Open markets are most appropriate where large numbers
of Buyers and Sellers are active. Closed markets are most appropriate where, by reasons
of market power or the thinness of trading partners, only a few pre-qualified participants
can appropriately trade with one another on the exchange. To date, except for the papers by
Mendelson and Tunca (2007) and Martinez-de-Albeniz and Simén (2007), there has been
little work on closed markets. Also, state-dependent demand analysis is represented only
by a few papers (Spinler ef al., 2003) and Hellermann (2006), although state-dependent
demand can be expected to be central to markets (like energy) in which weather plays a
significant role.

The second needed area of research concerns the structure of sustainable B2B exchanges.
Two factors that seem to find emerging agreement among researchers and practitioners are
liquidity and codifiability of transactions. Liquidity is often discussed in terms of the scale
of operations of the exchange and the ability to satisfy the demands of a sufficiently large
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group of Buyers and Sellers to attract continuing use. But liquidity itself is obviously driven
by the value-added character of a commodities exchange. Some seem to flourish and others
not, but there is not yet a good understanding of what determines when a particular type of
exchange may have a long-run economic value-adding role to play.

Perhaps the most important research challenge for B2B markets is the continuing develop-
ment of the integration of economics, finance and operations, just as noted by Birge (2000)
and Milner and Kouvelis (2007) for risk management in general. In my view, the emerging
framework presented in this chapter on the use of B2B exchanges and supporting options
instruments is likely to be a central feature underlying this integration. As always, empirical
validation and testing in specific sectors is the foundation of harvesting the benefits of these
innovations.

3.6 REFERENCES

Allaz, B. and J.-L. Vila (1993). Cournot Competition, Forward Markets and Efficiency. Journal of
Economic Theory 59, 1-16.

Araman, V., J. Kleinknecht and R. Akella (2001). Seller and Procurement Risk Management in
E-business: Optimal Long-term and Spot Market Mix. Working Paper, Department of Management
Science and Engineering, Stanford University, Stanford, CA 94305-4026, June.

Bachelier, L. (1900). Théorie de la Spéculation. Annales Scientifiques de I’Ecole Normale Supérieure,
3¢ Serie, 17, 21-86.

Birge, J. (2000). Option Methods for Incorporating Risk into Linear Capacity Planning Models. Man-
ufacturing & Service Operations Management, 2(1).

Black, F. and M. Scholes (1973). The Pricing of Options and Corporate Liabilities. Journal of Political
Economics 81, 637-654.

Boyabatli, O., P. Kleindorfer and S. Koontz (2008). Integrating Long-term and Short-term Contracting
in Fed-Cattle Supply Chains. Working Paper, Singapore Management University, December.

Cachon, G. (2003). Supply Chain Coordination with Contracts. In: Graves, S. and T. de Kok (Eds),
Handbooks in Operations Research and Management Science: Supply Chain Management. North-
Holland.

Clewlow, L. and C. Strickland (2000). Energy Derivatives: Pricing and Risk Management. Lacima
Publications, London.

Coase, R. (1937). The Nature of Firm. Economica N.S. 4, 386—405.

Crew, M.A. and P.R. Kleindorfer (1976). Peak Load Pricing with a Diverse Technology. The Bell
Journal, Spring, 207-231.

Crouhy, M., R. Mark and D. Galai (2000). Risk Management. McGraw-Hill Trade.

Geman, H. (2005). Commodities and Commodity Derivatives. John Wiley & Sons Ltd.

Geman, H. and S. Ohana (2008). Time Consistency in Managing Commodity Portfolios: A Dynamic
Risk Measure Approach. Forthcoming in Journal of Banking and Finance.

Goel, A. and G.J. Gutierrez (2006). Integrating Commodity Markets in the Optimal Procurement
Policies of a Stochastic Inventory System. Working Paper, Case Western Reserve University.

Hellermann, R. (2006). Capacity Options for Revenue Management: Theory and Applications in the
Air Cargo Industry. Springer Verlag: Heidelberg.

Hitt, L., D.J. Wu and X. Zhou (2002). Investment in Enterprise Resource Planning: Business Impact
and Productivity Measures. Journal of Management Information Systems 19(1), 71-98.

Kamat, R. and S. Oren (2002). Exotic Options for Interruptible Electricity Supply Contracts. Opera-
tions Research 50 (5) (September—October), 835-850.

Kaplan, S. and M. Sawhney (2000). E-Hubs: The New B2B Marketplaces. Harvard Business Review
78(3), May—June.



50 Risk Management in Commodity Markets

Klein, B., R.A. Crawford and A.A. Alchian (1978). Vertical Integration, Appropriable Rents, and the
Competitive Contracting Process. Journal of Law and Economics 21 (October), 297-326.

Kleindorfer, P.R. and G. Knieps (1982). Vertical Integration and Transaction-Specific Sunk Costs.
European Economic Review 19, 71-87.

Kleindorfer, P.R. and L. Li (2005). Multi-Period, VaR-Constrained Portfolio Optimization in Electric
Power. The Energy Journal, January, 1-26.

Kleindorfer, P.R. and D.J. Wu (2003). Integrating Long-term and Short-term Contracting via Business-
to-Business Exchanges for Capital-Intensive Industries. Management Science 49(11), 1597-1615.

Kogut, B. and U. Zander (1992). Knowledge of the Firm, Combinative Capabilities, and the Replication
of Technology. Organization Science 3(3), August, 383-397.

Laffont, J.J. and J. Tirole (1998) (Third printing). A Theory of Incentives in Procurement and Regula-
tion. Cambridge, MA: The MIT Press.

Lee, H. and S. Whang (2002). The Impact of the Secondary Market on the Supply Chain. Management
Science 48(6), 719-731.

Levi, M., P.R. Kleindorfer and D.J. Wu. (2003). Codifiability, Relationship-specific Information Tech-
nology Investment, and Optimal Contracting. J. Management Information Systems 20(2), 79—-100.

Li, C. and P. Kouvelis (1999). Flexible and Risk-sharing Supply Contracts under Price Uncertainty.
Management Science 45(10), 1378—-1398.

Marshall, C. and Siegel, M. (1997). Value at Risk: Implementing a Risk Measurement Standard. The
Journal of Derivatives 4 (Spring), 91-110.

Martinez-de-Albeniz, V. and D. Simchi-Levi (2005). A Portfolio Approach to Procurement Contracts.
Production and Operations Management 14(1), 90—114.

Martinez-de-Albeniz, V. and J.M.V. Simén (2007). A Capacitated Commodity Trading Model with
Market Power. Working Paper, IESE Business School, University of Navarra, Barcelona.

Mendelson, H. and T. Tunca (2007). Strategic Spot Trading in Supply Chains. Management Science
53, 742-759.

Merton, R. (1990). Continuous Time Finance. Basil Blackwell.

Milner, J.M. and P. Kouvelis (2007). Inventory, Speculation and Sourcing Strategies in the Presence
of Online Exchanges. Manufacturing & Service Operations Management 9:3, Summer. 312-331.

Peleg, B., H. Lee and W. Hausman (2002). Short-term E-procurement Strategies vs. Long-term Con-
tracts. Production and Operations Management 11(4).

Spinler, S., A. Huchzermeier and P.R. Kleindorfer (2003). Risk Hedging via Options Contracts for
Physical Delivery. OR Spectrum 25(3): 379-395.

Williamson, O.E. (1985). The Economic Institutions of Capitalism. New York: The Free Press.
Wu, D.J., P. Kleindorfer and J.E. Zhang (2002). Optimal Bidding and Contracting Strategies for
Capital-intensive Goods. European Journal of Operational Research 137(3) (March), 657-676.
Wu, DJ. and P.R. Kleindorfer (2005). Competitive Options, Supply Contracting and Electronic Mar-
kets. Management Science 15:3, 452—-466.

Wu, DJ., P.R. Kleindorfer, Y. Sun and J. Zhang (2005). Optimal Capacity Expansion in the Presence
of Capacity Options. Special issue on Electric Power Applications, Decision Support Systems,
October.



4
. The Design of New Derivative Markets |

Giovanni Barone-Adesi

4.1 INTRODUCTION

Commodity markets are rapidly changing. The emergence of new financial centers, the
deregulation of older markets, financial and technological innovations all combine to change
the market landscape. Older markets apply a variety of strategies to adapt to new realities,
ranging from consolidation to development of new technologies and new lines of busi-
ness. This chapter illustrates the main trends in this process, their motivations and the
considerations that rule the implementation of these strategies.

The economic environment spanned by financial globalization enhances opportunities
for trading derivatives on commodities and financial assets. Liberalization of the economy
implies market deregulation and often leads to the privatization of industries previously
considered to be natural monopolies. The aim of this process is to improve economic
performance. However these steps are not sufficient if competition is not ensured. Therefore
market design plays a crucial role for economic growth.

The price information and the better allocation of risk allowed by commodity markets
may contribute to reduce uncertainty firms face, but these benefits may be negated by
uncompetitive market structures. Atomistic markets with full information disclosure are
the most competitive. Perfect competition, however, destroys profitability, threatening the
long term survival of the market. Therefore market design must strike a balance between
competitiveness and profitability, with the aim of maximizing long term value.

If new markets achieve competitiveness with existing markets, investors develop a keen
interest in contracts matching their needs. New markets may arise to exploit these opportuni-
ties, though often economies of scale or scope may funnel growth towards existing markets.
Growing markets, however, may attain an excessive concentration of risk, leading them to
crises and loss of reputation or to very onerous capital requirements. Therefore the choice
of venue for new markets implies also a tradeoff between profitability and risk.

Until recently it appeared that the future belonged to over-the-counter (OTC) markets,
where large institutions trade among themselves with no intermediaries. However, the lack
of transparency of OTC markets has been a major determinant of the 2007 crisis of credit
markets (Pulliam and Ng, 2008). Open outcry exchanges may recover some of their appeal
as a result of this crisis. They may be more expensive, but they offer better opportunities for
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price discovery and contract enforcement. However, as the ineffective warnings of Eurex
to Société Générale in November 2007 show, exchanges’ advantages over OTC markets
may be diluted if exchanges process only part of the trading volume and members do
not have an accurate picture of their global positions (Gauthier-Villars and Mollenkamp,
2008).

4.2 DETERMINANTS OF SUCCESS OF NEW DERIVATIVE
MARKETS

Derivative markets augment trading opportunities offered by spot markets. The interest
they generate depends on investors’ perception that their welfare is enhanced by them. A
necessary condition for that to occur is the perception that prices convey useful information,
not subject to manipulation. This condition is hard to meet in markets dominated by one large
player, as is often the case in the utility sector, or in markets dealing with non-standardized
goods, such as artworks.

To limit opportunities for manipulation, occasionally restrictions on short sales are man-
dated. Restrictions on short sales curb interest not only because of the reduction in trading
opportunities they imply, but also because the adjustment of price to new information
becomes less efficient. Rather than leading to a better allocation of risk, derivative mar-
kets may then become sources of additional risk. Of course, allowing short sales requires
appropriate regulation in order to preserve market integrity.

If the basic conditions outlined above are met, success depends on the market’s ability
to offer competitive pricing to its users. To illustrate this, assume for simplicity a derivative
exchange with n potential users of equal size. Transactions among users are uniformly dis-
tributed. Then revenues typically are a quadratic function of the fraction of potential users
who are active in the exchange, n, because transactions with counterparties who are not
members take place outside the exchange. Therefore, as an example, a participation rate
of 30 % translates into a probability of 9% (30 % x 30 %) that a transaction can be com-
pleted through our exchange. Therefore we may write revenue R as a function of potential
revenue a

R = an’® 4.1)

Exchange costs include processing costs and the expected cost of default, which is possibly
insured at a fair premium. Processing cost, P, may be modeled as an affine function of
volume, because it is partially fixed:

P(V) = p + bn? 4.2

The cost of default insurance is the present value of expected loss because of defaults. That
includes also the exchange’s charter value, F, if loss severity forces termination. Default
cost, DC, minimization is reached at the capital level C* such that the following function
is minimized:

DC = E(L)[1 —g(CH)]+ Fg(C) (4.3)
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where E(L) and g(C*) are respectively the expected loss due to members’ insolvency and
the exchange’s probability of default per unit of time given the capital level C*. The three
equations above describe the economics of market operations. Operating profits, OP, are
given by

OP=R-P-DC 4.4)

Assuming a constant initial investment, maximizing value requires choosing the pricing
policy a, in equation (4.1), that maximizes operating value over time.

4.3 PRICE DISCOVERY

Processing transactions through exchanges allows for price information to be made available
to investors. Transparency in price dissemination allows investors to make correct market
valuations of their positions. As a result of transparency, large surprises become less frequent
and margining systems work more smoothly. However, transparency may impede the trading
of very large positions, especially by informed traders. This problem in commodity markets
is more acute than in the stock market, because physical constraints make the price of
many commodities very sensitive to quantity. Therefore it is necessary to limit disclosure
of traders’ positions.

A recent empirical study by Simaan and Wu (2007) suggests that the International Secu-
rities Exchange system of competitive market makers, providing consolidated anonymous
quotes, offers better price discovery than the more traditional systems of other option mar-
kets, based on modified open outcry or a single market maker. The increasing market share
of ISE supports the success of its system. Other multiple dealer markets, such as the Inter-
national Commodity Exchange, do not consolidate quotes and offer cleared as well as OTC
contracts.

Liquidity can be measured directly by bid-ask spreads if trades occur at those prices. If
trades occur at prices different from the posted quotes, it is possible to infer liquidity from
the decomposition of the variance of transaction prices (Easly and O’Hara, 2003, Hasbrouk,
1995, 2003).

More liquid markets attract most trades, reinforcing their dominance. In any case liquidity
varies over time, posing a potential threat to market viability. Liquidity risk becomes a major
concern if the market is dominated by a few large traders, especially if sensitive inventory
information leaks out. This was the case of the tin cartel (Hillman, 1988, Mitchell, 2005),
where attempts to regulate market supply ran into unmanageable inventory financing cost.

Some exchanges attempt to limit liquidity risk by keeping the right to liquidate existing
positions at a price set by the exchange. However, this is a device that may be employed only
exceptionally without harming the credibility of the exchange. Lumpy trading underscores
the existence of liquidity problems, with individual traders being able to affect prices.
Violent price changes may then occur whenever traders are forced to change strategy. Lack
of independence of subsequent transaction price changes indicates that liquidity is being
drained (Khandani and Lo, 2007). Sudden regime switching then becomes more likely.

A traditional way to control this problem was to have different position limits for hedgers,
who were likely to hold their position to maturity, and other traders. The widespread use of



54 Risk Management in Commodity Markets

OTC contracts with financial intermediaries by many traders has made this remedy obsolete.
In fact financial intermediaries trade as hedgers independently of the original motivation
of their clients. The increased riskiness stemming from insufficient price discovery limits
liquidity and investment. In some electricity markets curbs on short sales are also seen as a
mitigating device. That excludes some bearish investors from the price formation process.
As a consequence, the resulting price is upward biased.

4.4 TRADING, CLEARING, AND MARGINING

To allow for trading to proceed speedily it is necessary to disentangle information about
counterparty risk from the commodity market. This target is usually achieved by setting
a clearing corporation to act as central counterparty to all the members. This legal device
ensures that traders are not concerned with the default risk of the other side. Also settlement
is then simpler, because the gains or losses for each clearing member can be consolidated
in one account. Often, however, each clearing member is required to keep its proprietary
account separate from its customers’ consolidated account. This way the risks of clearing
and non-clearing members are more transparent, improving market integrity.

Clearing corporations can be exchanged-owned or independent. The former solution is
more common in derivative markets. It is increasingly coming under attack, because OTC
networks find it difficult to shift liquidity from exchange-owned clearing platforms. Inde-
pendent clearing houses that offer equal access would be ideal from the perspective of
new networks. Such platforms are common in the equity industry. Their limited diffusion in
derivative markets may be due to the protracted commitments that clearing contracts marked
to market implies. Nevertheless, competition authorities are encouraging the separation of
trading and clearing.

To cover usual daily changes in portfolio values, members are required to post margins
with the clearing corporation. If the posted margin is not sufficient, the clearing house
assumes the residual counterparty risk. In fact, although intraday margin calls are possible,
the time lag of payment systems blunts their effectiveness. An often unnoticed shortcom-
ing of the separation of proprietary and customer trades in only two accounts is that all
the customers of one clearing member are mingled from the perspective of the clearing
corporation. In case some of them and the clearing member default at the same time, the
portfolios of the other non-clearing members are subject to unprotected losses. To mitigate
this risk, margin calculations often are not only on net positions, but include also the total
of long plus short positions.

At first glance the technology of margin computations appears obsolete. Typically, margin
is computed for each contract separately, on the basis of recent daily price variations. For
complex securities, such as options, conventional shocks to market variables are considered.
This is the approach of the Chicago Board of Trade’s SPAN. A drawback of this approach
is that only limited margin offsets are available for related positions, such as a spread or a
futures and a put. No attention is paid to aggregate portfolio risk.

The apparent neglect of margining systems for modern portfolio theory cannot be
explained just with tradition. Perhaps it is explainable by the notion that allowing for risk
reductions due to diversification in portfolio margining would benefit the largest clear-
ing members most. Their large positions, however, are the most subject to liquidity risk.
Therefore traditional margining may be seen as a heuristic method to deal with this risk.
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The fact that margining is not a cost, except for the spread on interest rates members
face, may explain the limited appeal of portfolio margining to date. A description of recent
developments can be found in Hintze (2007). In spite of its slow start, competitive pressures
between exchanges, which are also subject to increasing competition from OTC networks,
suggests that portfolio margining will become more common among clearing members. Of
course, in the light of the considerations above, it could be applied to non-clearing members
only if their portfolios were not mingled.

4.5 MARKET INTEGRITY

Margins are designed to cover daily fluctuations. They are generally inadequate to cover
extreme events. Therefore there is a residual risk, to be absorbed by counterparties in OTC
trading or by the clearing corporation in organized exchanges. The clearing corporation
needs additional capital resources to absorb this risk, from members or third parties. The
low probability usually associated with extreme events discourages the permanent allocation
of costly risk capital to cover them. Therefore insurance may become an attractive option.
However insurance contracts may lack transparency. Moreover, risk may be difficult to
insure if its nature is systemic. Though a wider net of capital providers can reduce the
likelihood of failure, only public authorities can then fully ensure market integrity, especially
if the timely provision of liquidity is crucial. Some exchanges, such as Euronext, address
the need for immediacy in the provision of liquidity by having a bank subsidiary.

The recourse to third party capital, whether public or private, engenders moral hazard
problems. In the allocation of losses between members and other parties it is necessary
to balance the need to control moral hazard with the ability of the exchange to operate
effectively after extreme events. That ability is compromised if the exchange’s capital is
severely impaired. A viable solution rests on loss sharing rules between members and outside
investors.

Moral hazard also plays a role in clearing across markets. New memberships and risk allo-
cation in cross-clearing become exceedingly cumbersome. For these reasons cross-clearing
is not becoming more popular. Outright exchange mergers, as in the case of CBOT-CME, or
joint exchange ownership, as in the case of the London Stock Exchange with Borsa Italiana,
are often preferred.

Market integrity requires that sufficient capital resources be available. Scenario analysis
allows for the quantification of capital requirements. As a consequence the quality of scenario
analysis impacts directly on market survival. The design of scenarios can be based on
historical experience, possibly augmented by statistical models through bootstrapping or
expert knowledge. Barone-Adesi et al. (1999, 2002) propose to improve the reliability of
bootstrapping through a statistical filter reflecting changing market conditions.

Expert knowledge is the only approach available for new products for which no data
are available. The usefulness of expert knowledge, however, becomes questionable when
dealing with complex payoffs, because the identification of the most critical scenarios is
then non-trivial. That is a serious problem also in the approach based on extreme value
theory (Embrechts and Kluppelberg, 1997), because it does not have immediate multivariate
generalizations. In any case, there is no way to validate the correspondence of the modeling
of the extreme tails of joint distributions of relevant random variables with future market
outcomes. Even backtesting is then not applicable, because very few events occur in the
relevant range.
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Generally, statistical scenario generation, supplemented by stress testing on the basis
of expert knowledge, is then preferable. Although this approach cannot provide accurate
estimates of loss probability at extreme levels, it allows for the complete modeling of loss
distribution and for validation at lower levels. At extreme levels, the fact that major players
have incurred large losses may itself become a source of market uncertainty, drying up
liquidity and preventing market recovery.

4.6 MARKET RECOVERY

Disaster recovery plans need to be in place to support market integrity after extreme events.
Seizure and neutralization of defaulted portfolios need to be quickly feasible to prevent loss
increase. Necessary operational and legal arrangements include the designation of members
who will be assigned to liquidate defaulted portfolios and the legal framework that makes
operational arrangements possible. If market liquidity does not allow immediate liquidation,
hedging may buy the necessary time. In either case it is important to monitor portfolio risk
during the liquidation process and follow trading strategies that keep risk under control.

Often it is assumed erroneously that it is sufficient to withhold information from the
marketplace to liquidate unwanted positions. If these positions are very large, the trading
pattern of a hasty liquidation is sufficient to drain market liquidity and multiply losses.
Société Générale experienced this effect while liquidating its positions on 21 January 2008.
It is reported that its loss of 2 billion Euro on European equities mushroomed to 5 billion
Euro in one day.

A requirement for a correct liquidation is not to cause a panic by dumping a large
amount of securities. If the position cannot be held and cannot be hedged elsewhere, it is
preferable to negotiate its sale privately, as Amaranth did. However, that is also very costly.
Amaranth’s several attempts to unload its position were harmed by constraints on its assets,
held as collateral by a creditor. A secondary distribution with several days of forewarning
is certainly a better choice if the timing of liquidation is not binding.

A further issue concerns the legal enforcement of claims on margin or collateral. Other
creditors may have claims on the same assets. Different jurisdictions may apply different
priority rules or question the validity of existing contracts. If the market value of collateral
changes, it may become insufficient. This risk is greater if collateral seizure requires more
time. Haircuts on collateral value should reflect collateral risk.

4.7 MARKET OVERSIGHT

Trading rules need to provide a clear and equitable trading field to ensure continuing investor
interest. Reliable and timely enforcement is necessary to discourage market manipulation.
Judicial systems typically do not reach final results with the necessary speed. Therefore
market oversight is the realm of special public or exchange authorities. Although the
power balance rests with public authorities in civil law countries, common law privileges
self-regulation. This solution allows for more specialized knowledge and more supple reac-
tions to unexpected events. However, the discretional power that self-regulation implies
should be applied with moderation. Otherwise market authorities risk appearing capricious
or corrupt. Not surprisingly, historical heritage plays a major role in the choice of different
jurisdictions’ regulatory systems. While more experienced jurisdictions prefer to rely on
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a less rigid framework, to be able to adjust to unexpected events, newcomers attempt to
codify behavior extensively, often with unwanted consequences and mixed results.

An interesting recent case of regulatory uncertainty concerns the market for credit default
swaps (CDS). CDS are not recognized as securities. Therefore they are exempt from security
regulation. Although they provide a type of protection that may be regarded as insurance,
they are not subject to insurance regulation either. From a legal perspective they are simply
private contracts, wagers between private parties. The usual private contract law applies.
Perhaps some jurisdiction may even decide to apply antigambling rules and void CDS.

It is paradoxical that a market trading notional contracts for over 10 trillion dollars is
so largely unregulated. On one side its mere existence calls into question the need for reg-
ulation. Bank regulation was in fact originally motivated by the need to protect deposits
from liquidity and credit risk, that are very much at the heart of the CDS market. On the
other side, recent solvency problems at a number of bond insurers highlights the danger of
writing financial contracts with opaque counterparties. It is remarkable that the most regu-
lated institutions in the world, international banks, are significantly exposed to unregulated
counterparties they cannot monitor effectively. In some cases, banks have managed this risk
by buying CDS on their CDS counterparties, to protect themselves from the risk of default-
ing counterparties. This layered protection, however, has increased the uncertainty about
the allocation of the overall exposure. The collapse of liquidity in the interbank market has
been largely due to this uncertainty.

4.8 CASE STUDIES

Contract design plays a major role in ensuring success of new markets. A complete review
of these markets is beyond the scope of our survey. In this section we will just review
briefly some characteristics of contractual design that have experienced different degrees of
market success.

Many countries have developed successful electricity markets, usually by ensuring that
producers have equal access to the distribution grid. Markets that have linked grid fees
to distance, as in Germany, or to the purchase of transmission rights, as in California,
have experienced higher prices or more turbulence. In fact timely grid access rights are
fundamental for electricity, because it cannot be efficiently stored.

Weather derivatives are also written on a commodity that cannot be stored. Though
temperature derivatives enjoy some success, because of their direct link to energy costs,
rainfall contracts have been unsuccessful, because the economic effects of rainfall depend
mostly on its distribution. Moreover they are not linear at the extremes. Recently derivatives
on the level of the water table have been proposed as alternative to rainfall contracts (I am
in debt to A. Agarwal for this information), because they convey more useful information
about floods or droughts. Their success cannot be assessed yet.

A market that quickly collapsed, in spite of careful planning, is bandwidth. Technological
requirements for data transmission in fact have rapidly changed, to the point where band-
width is no longer a scarce resource for many applications. Contract prices have therefore
dropped close to zero.

Pollution permits in Europe have so far experienced a similar pattern. Governments’
desire not to drive out heavy polluters has led to a system under which free allowances are
given to firms on the basis of past pollution records. In theory, these allowances are set to
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generous levels initially, later reduced to give an economic incentive to pollution reduction.
In fact, shortfalls should be bought at market price from other firms, or compensated by
“ereen” investments. In reality, industry lobbying and shifting industry patterns have kept
pollution permits as “free goods” to date.

Derivatives on property and casualty insurance contracts have also found little interest
in the marketplace. The main reason is that it is not only hard for investors to assess
heterogeneous risks, but also claims are often settled long after the maturity of traded
derivatives. Derivatives on life insurance have more success, because events are more easily
defined and their occurrence is easily timed.

Another market that suffers because of the heterogeneity of underlying contracts is real
estate. Though price indices that overcome heterogeneity are becoming more available, the
limited liquidity of the underlying contracts is still a challenge.

The volatility of financial markets is at the base of several derivatives traded in exchanges
and OTC. Though volatility and other parameters of financial securities expand the set of
available investments, liquidity in their markets is slow to develop. Most investors still
prefer to monitor their portfolio’s exposure to volatility rather than engage into volatility
trading. Uncertainty about the behavior of basis risk and high market premiums are probably
the reasons for their choice.

4.9 CONCLUSION

The numerous changes in market organization witnessed recently point to a continuing
search for viable compromises between the numerous features influencing market success.
The review of the main economic, legal and technological issues underpinning market design
points to an evolution of older markets in search of economies of scale and scope to compete
with newcomers. Consolidation and new business development are the two trends of this
evolutionary process.

The competitive forces that fuel exchange growth may lead to excessive concentration of
risk. That may make exchanges vulnerable to systemic events. Excessive regulatory rigidity
may limit the ability of members to react to unusual market conditions, increasing danger.
Although discretional market oversight is preferable, it carries its own risks of arbitrary and
corrupt practices.

The rise of global financial institutions, able to trade with each other without exchange
intermediation, appeared until recently destined to doom traditional organized exchanges.
The current credit crisis underlines the advantages of traditional exchanges in terms of price
discovery, transparency and market oversight. These benefits may be worth the additional
cost of intermediation.
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5
Risk Premia of Electricity Futures:

A Dynamic Equilibrium Model

Wolfgang Biihler and Jens Miiller-Merbach

5.1 INTRODUCTION

Electricity futures prices generally contain risk premia or discounts on the expected spot
price. As electricity is not storable, those premia do not indicate market inefficiencies
due to lacking arbitrage activity, but rather reflect rational behavior of risk averse in-
vestors.

Accordingly, the explanation of electricity futures prices can be split into two problems.
The first one is to determine the expected spot price for the delivery period of an electricity
forward. This problem is mainly an econometric challenge. The second is to model the term
structure of the risk premium which is more interesting from an economic point of view for
three reasons.

First, electricity is a homogenous, exchange-traded commodity that is virtually not substi-
tutable at short notice. Premia in futures prices are therefore not diluted by market frictions
or interdependencies to related markets, but primarily reflect the market members’ taste for
risk. Second, knowledge of the term structure of risk premia helps an individual firm to
find the optimal timing of hedging. Third, exploiting the term structure of risk premia is an
interesting area for speculative traders as specialized hedge funds, which are increasingly
active in electricity and other energy markets.

The literature on spot and futures markets for electricity can be classified into three
groups, econometric models, reduced-form models, and equilibrium models. They strongly
differ in their ability to derive theoretical predictions on the sign and the term structure
properties of risk premia in futures prices.

Econometric models identify major factors that explain the observed behavior of spot
prices, especially mean reversion, high volatility, right skewness, price spikes, and season-
ality (Fleten and Lemming (2003), de Jong (2005), Johnsen (2001), Salerian et al. (2000),
Huisman and Mahieu (2001)). These approaches are useful to determine one part of the risk
premia, the expected spot prices.

Reduced-form models have to specify exogenously the market price of electricity risk
as electricity is not storable. By a no-arbitrage argument they derive the term structure
of futures prices and risk premia as a function of the state variables, their dynamics, and
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the market price of risk (Pilipovi¢ (1997), Kellerhals (2001), Geman and Vasicek (2001),
Koekebakker and Ollmar (2005), Audet et al. (2004), Lucia and Schwartz (2002), Villaplana
(2003), Geman and Roncoroni (2006), Hinz and Weber (2005)). The risk premia are derived
by assumptions on the exogenous market price of risk. Geman and Vasicek find in their
empirical investigation that risk premia will in general be positive at the short end and
explain this finding by the excess demand for hedging against price spikes in the spot market.

Our model belongs to the third class that focusses on the production and demand structure
of electricity. Spot prices, futures prices, and risk premia are derived endogenously. A
fundamental dynamic model of this type was published by Routledge et al. (2001), which
is, however, difficult to test empirically. Bessembinder and Lemmon (2002) developed a
mean-variance based one-factor model with risk-averse electricity producers and retailers
which trade futures to reduce their risk exposure. They verify the predictions of their model
empirically. By the static design of their approach these tests are restricted to one-period risk
premia. Benth et al. (2007) propose a continuous-time equilibrium for risk-averse producers
and retailers who incorporate time-dependent market power. They argue that producers
are committed to long-term investments and are thus willing to grant discounts for longer
maturities in order to reduce variability in their profits, but for shorter maturities consumers
have a larger incentive to hedge and are thus willing to pay a positive premium on the
expected spot price.

Our contribution to the literature is twofold. On the theoretical side we extend the model
by Bessembinder and Lemmon (2002) to a dynamic equilibrium model. This generalization
allows us to derive an endogenous term structure of electricity futures prices and the incor-
porated risk premia. From an extensive comparative static analysis we derive predictions
on the sign of risk premia and the shape of their term structure.

On the empirical side we test some of the predictions. Following Longstaff and Wang
(2004) we estimate the unobservable risk premia as differences between futures prices at a
certain date before maturity and the average of the observed spot prices during the delivery
period. In our empirical analysis we use data from the Scandinavian exchange Nord Pool,
which is one of the oldest electricity exchanges in Europe. Our sample comprises almost
eight years of prices and includes periods of rather calm markets as well as the winter of
2002-03 when extreme weather conditions resulted in high volatilities at Nord Pool.

Our main findings are that our one-factor equilibrium model is flexible enough to generate
monotonically increasing, decreasing, and all kinds of hump-shaped term structures of risk
premia. It predicts that the term structure becomes flat for long maturities of futures contracts.
The empirical study shows that the predictions of our model are fulfilled to a large extent:
If the current demand for electricity is equal to the average demand the risk premia are on
average positive, monotonously increasing for maturities up to eight weeks and becoming
flat for longer maturities.

Our paper is organized as follows. In Section 5.2, we shortly review the applied dynamic
equilibrium model. Section 5.3 presents the comparative statics. The empirical analysis
based on Nord Pool data is given in Section 5.4. Section 5.5 concludes.

5.2 THE DYNAMIC EQUILIBRIUM MODEL

In this section we develop a multi-period extension of the static model by Bessembinder
and Lemmon (2002). It has several degrees of freedom that we specify in Section 5.3 when
providing comparative statics.
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The market structure is characterized by competitive, risk-averse producers G and retail-
ers R of electricity. Both groups are aggregated to representative agents. We model their
preference function by a mean-variance approach on terminal wealth We at some future
date ®. At date 7, they maximize the objective function

E{Wg} — iaiVar {W4}, A € (G, R}, (5.1)

where A% and AR are related to the risk aversion of the producers and the retailers, respec-
tively. The terminal wealth is determined by the cash flows that the representative agents
receive from either producing or retailing electricity, as well as from their trading activities.
Both agents must trade in the spot market to satisfy the exogenous total end-user demand
D, at each date 7. As electricity is not storable we assume that the production volume is
equal to the demand. Both agents may trade electricity futures with different maturities to
increase their risk-adjusted terminal wealth (Eq. (5.1)).
If the producer does not use futures contracts he receives the cash flow

C/(D,)D, — C,(D,) (5.2)

at the end of the interval t, r = 1, ... , ®. C/(D) denotes the variable production cost

as a (possibly time-varying) function of the produced volume of electricity, D, and C’,(D)

denotes the marginal cost function. In a competitive equilibrium marginal costs equal the

spot price. We assume that C'; is continuous and strictly increasing in the production volume.
The retailer receives the cash flow

pD; — C/(D,)D;. (5.3)

p represents the fixed end-user price per unit of electricity which is assumed to be indepen-
dent of the consumed quantity of electricity.

By trading futures, both representative agents can reduce their risks by adding com-
pounded cash flows to their final wealth from the marking-to-market. Solving Eq. (5.1)
determines the futures prices in equilibrium. As discussed in Basak and Chabakauri (2007),
two solution concepts are available. The global solution is not time-consistent and its imple-
mentation needs a commitment device. We consider the time-consistent solution based on
the dynamic programming approach. In equilibrium we obtain the following futures prices
at time ¢t with maturity date 7':

®
Fir =B{Fpiry—& ) O CovilpDy — Co(Dy); Fryrr), 1 <T <O. (54)
O=t+1

Ry G . . . :
InEq. (5.4)& = AAR j,\a denotes the combined risk aversion factor and r the constant interest
rate. In the last period before maturity, Eq. (5.4) can be written as

®
Froir =EBr_{Frr}—& Y €@ Covr_i{pDy — Co(Dy): C1(Dr)}, t<T <O
0=T-1
(5.5)

where F7r = C'r(D7) is the final settlement price and equal to the spot price Pr.
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The equilibrium futures price in Eq. (5.4) is equal to the expected next period’s futures
price or spot price, respectively, minus a risk premium. This risk premium is the sum of
the covariances between future cash flows and the next period’s futures or spot price. The
term pD(#) — Cy(Dy) denotes the aggregate net cash flow that the whole electricity sector
receives in the economy. The representative retailer receives pD, and the producer has to
pay C,(D;) for producing during the time interval [z, ¢ + 1). The spot and the futures market
allocate the aggregate cash flow and the cash flow risk between the producer and the retailer.

5.3 COMPARATIVE STATICS

Two factors in the equilibrium model are yet to be specified: The process of the state
variable, i.e. the end-user demand D,, and the cost structure.

We assume that the stochastic demand process D; is the sum of a deterministic component
D, and a stochastic component S,. D, reflects the characteristic seasonal patterns:

D, =D, +5§. (5.6)
The stochastic component S, is modeled as a first-order autoregressive process:
S, =pSi_1 +08, &~N(O1i i d. (5.7)

This choice is motivated by two reasons: First, our objective is to use a rather simple process
in order to not dilute the effects of the equilibrium model by those from a (principally
admissible) more sophisticated demand process. Second, the AR(1) model in Eq. (5.7)
corresponds to one-factor mean-reversion models as, e.g., in Lucia and Schwartz (2002)
and therefore allows a direct comparison with a one-factor reduced form model. As we
want to avoid negative demands we cut off the normal distribution appropriately.'

To avoid time dependencies that are a result of the seasonal structure of D, we assume
for the comparative static analysis that D, is time-invariant. The value of D, = D = 40
GWh corresponds to the average Scandinavian electricity demand during our sample period.

In our basic setup, we set p = 0.6, o = 4 GWh, and the retailer’s rate p to 30 Euro/MWh.
The marginal cost function is given by

C'(D) =dD3/D° (5.8)

with d = 30. This parameter setting induces a spot price of 30 Euro/MWh for the average
demand D. The third order ensures that spot prices exhibit a strong volatility and is also
chosen by Bessembinder and Lemmon (2002) in their analysis. This price level approx-
imately corresponds to mean prices at Nord Pool during the two-year period from 2002
until 2003. Figure 5.1 shows the right-skewed distribution of the spot price C'(D,) for the
symmetrically distributed demand.

Figure 5.2 presents the one-period cash-flows depending on the demand for the producer
and the retailer. They exhibit asymmetric risk exposures. The producer’s loss is almost

! Note that the cut-off of the lower tail introduces an intertemporal dependency between &, and &; . However, with
appropriate values of p and o, this dependency is negligibly small in comparison to the autocorrelation introduced
by p.
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Figure 5.1 The stationary right-skewed probability density of the spot price at a current demand
of D = 40 GWh. The median is 30.00 Euro/MWHh, the mean is 31.41 Euro/MWh with a standard
deviation of 11.60 Euro/MWh
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Figure 5.2 Example of the producer’s and the retailer’s unhedged cash flows depending on the
exogenous aggregate demand. The marginal cost function is given by C’'(D) = 30 - D3/D3, where
D = 40 GWh is the unconditionally expected demand. The retailer’s rate p is set to 30 Euro/MWh.
The retailer breaks even when the realized demand hits the unconditional expected demand D. For
demand levels below 25 GWh, the retailer’s cash flow shows slightly positive co-movement with the
spot price
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constant and bounded for low demand levels, whereas his profit is unbounded in D. The
retailer can achieve a maximum profit at a demand level below about 25,200 MWh and is
exposed to severe losses for high demand levels.

As the level of the interest rate on commodity futures prices is of minor concern, we
assume r = 0. Finally, we set the parameters of risk aversion: A = AR =2 . 1077, i.e.
£ =10".

The following analysis is structured as follows: First, we discuss the term structure of
futures prices and risk premia. In the second part we examine how the premia react if we
change the allocation of risk and market power between the producer and the retailer. Third,
we vary the parameters of the demand process.

We usually consider three to five different values for the demand Dy in the first period.
This demand characterizes the initial value of the state variable D,. The time interval between
two maturities of futures contracts as well as the step size between hedging decisions of the
agents is one week. The planning horizon covers ® = 26 weeks and we determine expected
spot and futures prices up to 20 weeks.

5.3.1 Forward curve and risk premia

First we consider the futures prices as a function of the contract’s maturity. Figure 5.3 shows
these prices at time ¢+ = O for five different values of the initial total demand.

For long maturities, the current value of the state variable D has only little impact on the
futures prices. This result is a consequence of our AR(1) specification of the demand process
D;. The futures prices converge towards the current spot price C'(Dg) for decreasing time
to maturity.

60
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Figure 5.3 The forward curve at time ¢+ = 0 for maturities of 1 to 20 periods in five constant states,
i.e., levels of demand. F o denotes the spot price
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Figure 5.4 The risk premia Fy 7 — EO{I:"T,T} for different states and maturities. For comparison, we
present the premia for the single-period model (Bessembinder and Lemmon (2002))

We observe that for the reference case of Do = D = 40 GWh the futures prices lie
above the spot price of 30 Euro/MWh for two reasons: First, due to the convexity of the
marginal cost function the expected spot price is always greater than the spot price of
expected demand. This effect also holds in the case of risk neutral agents. Second, the
futures price premium Fyr — EO{I:“T,T} is positive for Dy = D. To discriminate the two
effects, Figure 5.4 shows the premium for the five different values of the initial total demand
as in Fig. 5.3. For comparison, we also present the premia for the single-period model by
Bessembinder and Lemmon (2002).

We can draw several conclusions. First, as in the static model by Bessembinder and
Lemmon (2002), the premium increases in the state variable, and thus in the expected
demand. However, in the multi-period model the premia of the futures with one period to
maturity are larger in absolute terms than in the single-period model. This result is caused
by cross-hedging effects. The agents use a certain contract not only to hedge their exposure
to the corresponding maturity, but also to other maturities. Second, the premia and discounts
converge to a positive value. The reason for this observation is that for values of D about
40 GWh the retailer has a worse risk position compared to the producer as the gap between
the retailer’s cash inflow pD and his outflow C’'(D)D increasingly widens (cf. Fig. 5.2). This
enables the producer, who typically enters short positions in futures, to enforce a premium.
As we will show in Section 5.3.2 a discount is also possible, e.g., if we assume a higher
rate p (see Fig. 5.8).

Third, the premium can have a contango- or backwardation-like shape, or it can be
hump-shaped with either a local maximum or a local minimum. Fourth, for a low expected
total demand, the retailer can have an advantage compared to the producer. This is the case
if the current demand is low and T is also small. Then, the retailer is able to achieve a
discount.
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Figure 5.5 The term structure of the one-period premia Fop 7 — EO{I:" 1,7} for different values of the
current demand D

As the agents may trade futures at each time, we are also interested in the one-period
premia and discounts. Figure 5.5 shows that futures with a long time to maturity have
virtually no premium or discount on their expected next period’s price. The reason for this
fading effect in one-period premia can be traced back to the assumption that the demand
follows an AR(1)-process. If the state variable changes, futures prices with a long time to
maturity will virtually not be affected, and their variance will be low. This last property
is shown in Fig. 5.6. This figure shows the term structure of the standard deviation of the

one-period futures price changes, ,/Varo{ﬁ 1.7}, conditional on the current demand Dg. As
expected, the standard deviation strongly decreases with maturity. Furthermore, it increases
with the current demand Dg. This is caused by the right-skewness of the spot prices.
Finally, we take a look at the relative premia or discounts defined as the conditional
one-period futures price premium divided by the conditional standard deviation:

E { For—Fur } -
For _ For —Eo{Fi 1}

\/Varo {%} \/V3r0{Fl,T}

As shown in Fig. 5.7, the relative one-period risk premia depend only weakly on the futures’
maturity, i.e., the absolute premia and its standard deviation depend in about the same way
on the time to maturity of the futures. However, the current value of the demand has a
strong effect on the relative premia. This result is a strong contrast to the behavior of the
premium Fyr — EO{FT,T} that shows a dependence on the current demand only for short
maturities. This effect is due to the producer’s and retailer’s focus on their cash flow risk

Ao = (5.9)
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Figure 5.6 The conditional one-period standard deviation ,/Varo{Fl,T} of the one-period futures
price changes conditioned on the current demand level Dg
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Figure 5.7 The conditional relative premia, Ag r, as defined in (5.9) for different levels of the current
demand D
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instead on the price risk only. Values of the demand variable Dy around 30 GWh result
in a lower cash-flow risk for the retailer relative to the producer. In order to accept the
producer’s selling orders the retailer requires compensation.

Surprisingly, the relative premia slightly increase for all values of Dy when maturity
comes close. We also observe this effect in a setting that is in favor of the retailer, i.e.,
for a larger rate p (not shown). It compensates for the skewness of next-period prices. The
spot prices exhibit the largest skewness, meaning that futures with one period to maturity
incorporate the largest one-period relative risk premium. With increasing time to maturity the
skewness decreases. In our setting, futures prices with more than 10 periods to maturity are
almost symmetrically distributed. Without the skewness, i.e., when applying a linear function
of marginal cost instead of Eq. (5.8), the relative premia are equal for all maturities.

5.3.2 Parameters of risk allocation

The size of the risky market cash flows is determined by the rate p that the representative
retailer receives and the production costs that the producer has to pay. Since pD and C (D)
show asymmetric risk, the two parameters p and d and the order of the polynomial cost
function also determine how the risk is allocated among the two agents. In the following we
analyze the premium Fy r — Eo{F 7.7} for variations of p and of the marginal cost function’s
parameters.

Figure 5.8 shows the premia and discounts Fy 1 — EO{I}T,T} for various values of p. Not
surprisingly, the futures price premia are almost linear in p. Without showing we state that
the value of p that minimizes the retailer’s cash flow variance is much larger than 30.
Thus, for the range presented here, higher values of p reduce the retailer’s risk and his
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I —— T=2,Dy=40GWh
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Figure 5.8 The price premia Fy 7 — Eof IET,T} of futures contracts with two and twenty periods to
maturity as a function of p. The premia of the three long-term futures are virtually equal (bold line)
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need to hedge with futures. Furthermore, Fig. 5.8 shows that the sensitivity of the premia
with respect to p increases with time to maturity. Note that for the futures contracts with
longer maturity the graphs coincide, i.e., these premia are almost independent of the state
variable D.

To study the effect of different marginal cost functions

C'(D) = d,D"/D (5.10)

we vary simultaneously the exponent 7 and d,, with d,, = 30 - D@~ in order to ensure
that the spot price is equal to 30 Euro/MWh for a current demand of Dy = D in all cases.

Figure 5.9 shows the results. For a current demand of 40 and 50 GWh the futures price
premium evolves in favor of the producer if n increases. This indicates that a steeper cost
function allocates a higher portion of risk towards the retailer. The reason is that the sales
C'(D)D of the producer increase more strongly than his costs C (D). Simultaneously the net
cash flow of the retailer decreases. This finding is consistent with a result by Bessembinder
and Lemmon (2002) who state that the premium increases with the skewness of spot prices.

For the case T = 2 and Dy = 30 GWh the risk premium is negative and increases in
absolute terms with n for 2 < n < 5. Figure 5.2 explains this effect. For demand levels
around 25 GWh, the retailer faces a low risk whereas the producer’s risk increases with the
polynomial degree of the cost function.

Finally, we discuss the impact if the composite risk aversion factor £ is varied. It follows
from Eq. (5.4) that the one-period futures price bias is linear in &. This property does not
hold for the premium Fo r — EO{I*:T,T}, T > 2. As this premium is the result of a recursive
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Figure 5.9 The risk premia For — EO{I:"T,T} of futures contracts with two and twenty periods to
maturity, depending on the order n of the cost function. The premia of the three long-term futures are
virtually equal (bold line)
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application of Eq. (5.4), & does have an influence of higher order. Figure 5.10 shows this
non-linear behavior. Note that the abscissa is scaled logarithmically.

5.3.3 Parameters of the demand process

In our setting, the two parameters p and ¢ determine the conditional variance of the total
demand. Since they both influence the stochastic behavior of D in a similar way, we only
analyze p.

For most parameter constellations an increase in p also increases the absolute values of
the premia and discounts. However, the futures price premium can also change its sign. In
Fig. 5.11 the futures contract with six months to maturity shows this behavior for an initial
demand of 30 GWh. Again, the allocation of risk between producer and retailer explains
this behavior: For small values of the state variable, the retailer experiences a low cash
flow risk in comparison to the producer. If p increases, larger future values of D become
less probable. The retailer’s risk decreases faster than the producer’s risk, and the positive
premium decreases and changes its sign.

5.4 EMPIRICAL STUDY

In our empirical study we check whether our model’s predictions on the term structure of
risk premia hold for the Scandinavian electricity market. This market is one of the earliest
liberalized electricity markets in Europe. Trading at the Scandinavian electricity exchange
Nord Pool began in 1992.

For our purposes, we need to observe two market segments at Nord Pool: The spot market
(day ahead market) and the so-called financial market. Futures, forwards, and options are
traded at the latter. All prices are given in NOK/MWh.? In the spot market electricity is
traded for physical delivery during each single hour of the subsequent day (or days, if
weekends or exchange holidays follow).

In the financial market futures and forwards are traded continuously. The underlying of all
contracts is the 24-hour-delivery of electricity per day at a constant rate during a specified
delivery period. All contracts are cash settled. The delivery periods of the listed contracts
range from one day to one year. Futures are used for shorter delivery periods, forward
contracts are listed for delivery periods of one month and longer. The time-to-maturity of
the listed contracts, i.e., the time until the delivery period begins, ranges from two days up
to three years. For our empirical study we use only week and block contracts as those were
the most liquid ones during our observation period. They are characterized by the following
features.

e Week futures have a delivery period from Monday through Sunday. They may have a
time-to-maturity up to eight weeks. They are the most actively traded contracts at Nord
Pool, however, liquidity decreases with increasing time-to-maturity.

e Block futures cover a delivery period of four weeks. The listed maturities comprise the
time interval from eight up to 48 weeks. Block futures were actively traded but were
successively replaced by month forwards in 2003-2004. Block futures have a special

2 Beginning 2003, Nord Pool successively switched to Euro/MWh for some forward contracts.
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cascade structure as it becomes common in electricity and gas markets. Eight weeks
before maturity they are split into a volume-equivalent bundle of the corresponding four-
week futures contracts. This cascade structure allows the market participants to hedge
their exposures more precisely for closer maturities.

Nord Pool does not provide intra-day prices for the financial market but only so-called
closing prices that are applied for the daily settlement of futures. The closing price is the
last registered trading price at a randomly chosen point in time within the last ten minutes
before trading ends.? If there were no trades on a certain exchange day, Nord Pool uses
several procedures to estimate a settlement price. Nord Pool also provides the daily trading
volumes for each contract so that we can identify closing prices that are based on trading.

5.4.1 Spot Prices

Daily spot prices have been available since 1992. We do not use spot prices before 1 Novem-
ber 1996 when Finnish electricity firms gained access to Nord Pool.* Figure 5.12 plots the
level of the daily spot price until 10 August 2004, and its first difference. Table 5.1 shows
some descriptive statistics for several 12-month periods as well as for the whole period. It is
well known that electricity spot prices exhibit significant daily, weekly, and yearly seasonal
patterns. However, this seasonality is superimposed by strong changes in the mean level
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Figure 5.12 The daily spot price and its first difference at Nord Pool from 1 November 1996, until
10 August 2004

3 See Nord Pool (2004) for details.
4 Nord Pool (1998), p. 9.
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Table 5.1 Descriptive statistics for the daily spot price P, and its first differences at Nord Pool in
the period between 1 November 1996 and 10 August 2004 (whole sample) and for subperiods of
12 months each. Instead of calendar years we select subperiods between April and March in order to
clearly separate the winter periods

04/01/97 - 04/01/98 — 04/01/99 — 04/01/00— 04/01/01 — 04/01/02— 04/01/03 - whole
03/31/98  03/31/99 03/31/00 03/31/01 03/31/02 03/31/03 03/31/04 sample

Daily spot price, P, [NOK/MWh]

Obs. 365 365 366 365 365 365 366 2841
Mean 130.27 110.52 108.98 125.33 178.08 258.84 252.70 171.39
Std. dev. 29.14 31.69 30.37 60.11 27.15 162.99 33.23 90.45
Skewness —0.018 —0.202 2.381 2.511 0.710 1.399  —0.388 2.378
Kurtosis —-0.29 1.24 19.12 15.22 2.40 1.65 1.20 10.47
Minimum  58.21 21.27 50.43 31.85 119.07 80.65 128.91 21.27

Maximum 234.25 266.47 387.78 633.36  335.80 831.41 343.25 83141

Daily spot price differences, P, — P—; [NOK/MWh]

Obs. 365 365 366 365 365 365 366 2840
Mean 0.04 —0.07 0.03 0.26 -0.22 0.33 0.02 0.00
Std. dev. 10.09 11.23 20.02 37.50 17.40 19.66 16.42 20.09
Skewness 0.750  —0.599 3.920 3.156 1.722  —-0.223 0.964 3.358
Kurtosis 3.54 21.12 111.60 66.41 18.82 6.71 4.77 121.88

Minimum —42.02  -96.44 —197.32 26429 -98.79 -9592  -55.65 -—264.29
Maximum  45.58 76.81 265.49 440.59  151.74 94.00 89.03  440.59

of the spot price. Table 5.1 shows that in the last two years the mean spot price as well
as its median were about twice as high as in earlier periods. Remarkable are the unusually
high spot prices during the two-month period from December 2002 to January 2003. This
behavior contrasts strongly with the other price peaks that last only for one, sometimes two
days.

5.4.2 Estimation of Risk Premia

Futures prices also exhibit seasonal patterns as well as an increasing trend during the obser-
vation period. Figure 5.13 shows exemplarily the term structures on the first Wednesdays of
the years 2000 to 2003. We abstain from presenting detailed descriptive statistics on futures
prices, but focus on the differences between futures and spot prices.

Following Longstaff and Wang (2004), we estimate the unobservable risk premium of a
futures contract by the ex-post difference between the futures prices F, 7 observed at time

1
Fir =5~ Z Pri- (5.11)

t and the average realized spot price 1/Np Y Py, during the delivery period of the particular
futures contract. Np denotes the number of days (seven or 28 days for week or block futures,
respectively) of the delivery period. These differences provide a first empirical insight into
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Figure 5.13 The term structures of observed week and block futures at Nord Pool. The first Wednes-
day in each year between 2000 and 2003 was selected (first Thursday in 2003). Grey colored lines
indicate settlement prices of futures that have not been traded on the particular observation day.

the term structure of the risk premia. As the number of transaction prices for futures vary
we use weekly averages of traded futures prices in the above defined difference, and omit
settlement prices of futures that have not been traded on a certain day. As a consequence,
we obtain one estimate for the risk premium in each week for each futures contract, if there
was at least one transaction in the futures contract in a particular week.

Table 5.2 presents the estimates of the average risk premium for maturities from one
week to one year. Wx denotes week futures with x weeks until maturity, Bx denotes block
futures with x 4-week periods until decomposition in four equivalent week futures.

For the whole sample we find a positive estimate for the risk premium of 3.70 NOK/MWh
or 2.16 % of the average spot price. This result is in line with the prediction of our model, as
presented in Fig. 5.4 for the case that the demand Dy in the first period equals the average
demand D. Given the positive trend of the spot prices in the sample period, this result is
remarkable. If this trend was not — at least partially — reflected in the futures prices, one
would expect negative ex-post differences between futures prices and average spot prices
in the delivery period.

The predictions of the model hold also for week futures. Up to a maturity of eight weeks
the estimated risk premium is strictly monotonously increasing in maturity. The huge risk
premium for the week futures W8 does not represent a reliable estimate as it is based on
a relatively small sample of only 20 observations. For block futures, the estimated average
risk premium decreases in maturity and becomes negative for maturities of 20 weeks and
more. We suspect that this behavior of long-term contracts is driven by the unusual dry
summer of 2002 and the resulting peak of spot prices in December 2002 and January 2003.
Therefore, we re-estimated the average risk premia without those week and block futures
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whose delivery period fully or partly covers this two-week period. The results are presented
in Table 5.3.

Comparing Tables 5.2 and 5.3 we find a number of remarkable differences. First, the
mean risk premium for all contracts increases from 3.70 to 8.51 NOK/MWh. This increase
is exclusively caused by an increase of the long-term block futures’ risk premium from
—0.36 to 9.86 NOK/MWh. We attribute this increase to the not-fully-anticipated high spot
prices in the December/January period for long-term contracts.

Second, the risk premia in week futures are still increasing in their maturity but on a
lower level. We interpret this surprising result as an overestimate of the future risk related
to the increase of the spot prices in October and November 2002.

Third, the average risk premia of all block futures are now positive and, as predicted by
our model, no longer exhibit a trend.

Fourth, the standard deviation of the risk premia increases in Table 5.2 for week and
block futures in their maturities. In Table 5.3 this monotonicity holds only for week futures
and the standard deviations are lower for both types of futures contracts. As a consequence,
the risk premia of all futures contracts in Table 5.3 are — contrary to those of Table 5.2
— significant on the 5 % level using the t-test with the correction by Newey/West.

5.5 CONCLUSION

As electricity futures cannot be hedged by holding the underlying, electricity futures prices
may contain implicit risk premia additional to the expected spot price during the delivery
period. By extending Bessembinder and Lemmon (2002) we develop a dynamic one-factor
equilibrium model that is based on risk-averse producers and retailers of electricity. From
this model we derive a recursive structure for the endogenous futures prices and their risk
premia. The comparative static analysis based on a specific demand process shows that
our one-factor model is flexible enough to produce upward, downward, and all kinds of
hump-shaped term structures of risk premia. The shape and the sign of the risk premia
depend on the expected demand conditioned on the demand in the first period. The risk
premia are positive when the current demand level is high and negative for low demand
levels.

We furthermore show that the relative one-period risk premium, defined as the ratio of
the one-period risk premium and the conditional standard deviation of the futures price,
increases with decreasing time to maturity. This effect represents the hedging demand of
the retailer who faces a risk profile that is asymmetric to the producer’s profile.

In our empirical study we used a sample of almost eight years of spot and futures prices
from the Scandinavian exchange Nord Pool. We find evidence that electricity futures prices
contain the largest positive risk premia several weeks before maturity. They decrease if the
maturity shortens, but they remain positive on average.

We conclude that the term structure of the risk premium in electricity futures prices can
be explained basically by the risk-averse behavior of producers and retailers in combination
with asymmetric risk profiles of these two groups as they are common in energy markets.
This result distinguishes our equilibrium approach from reduced-form models that depend
on an exogenously specified market price of risk.

To our knowledge quite a few electricity retailers and consumers follow a rolling strategy
to hedge the risk of spot prices in that they increase their hedge ratio with decreasing time to
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maturity. Our results are useful for the timing of hedging activities and they are interesting
for speculators who want to exploit the spreads between risk premia of different maturities.
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6
Measuring Correlation Risk for Energy

Derivatives

Roza Galeeva, Jiri Hoogland, and Alexander Eydeland

6.1 INTRODUCTION

The importance of correlation as a measure of dependence has been often emphasized in the
context of pricing derivatives whose payoffs depend on the joint distribution of underlying
prices, indices, or rates. There is no doubt that at present these derivatives are getting
noticeably more popular and numerous. For example, they include a vast class of basket
options, i.e. options on linear combinations of various price indices from different markets.
Another example can be found in commodity markets, where spread options, both standard
and, increasingly, “multi-legged”, are omnipresent.

Obviously, there are limitations to the use of the correlation, especially in the case of com-
plex joint distributions. However, even under these circumstances practical considerations
often force one to use correlations as measure of dependence.

Once the correlation is used for pricing, an immediate question arises: namely, the ques-
tion of estimating the sensitivity of derivative prices to the correlation parameters, and with
it the question of corresponding correlation risk measure. In this chapter we discuss various
ways to define and compute one such measure, the correlation VaR.

We start with a brief recap of the correlation and its properties. We discuss various
approaches to parametrization of the correlation matrix. We then introduce different meth-
ods to generate distributions of correlations matrices. Finally, we apply these methods to
determine the correlation VaR of a typical energy derivative. We conclude with a discussion.

6.2 CORRELATION

Linear correlation is the most widely used measure of dependence between random variable
X and Y with finite variances. It is defined as:

Cov[X, Y]

X,Y)= —F————
8 ) o2[X]o?[Y]
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where Cov[X, Y] is the covariance between X and Y, Cov[X, Y] = E[XY] — E[X]E[Y]
and o2[X] = Cov[X, X], 02[Y ] denote the variances of X and Y. The linear correlation is a
measure of linear dependence. For the elliptical family of joint distributions, which include
joint normal, lognormal and others, the linear correlation together with the variances is
sufficient to describe the dependency structure. The pitfalls and limitations of the concept
of a linear correlation are investigated in detail in the excellent paper by Embrechts, McNeil
and Straumann (1999).

If we are dealing with n random variables X 1, X, ... X,, (for example returns of financial
variables), then correlations p;; between different pairs i, j of returns are expressed in terms
of matrices. Correlation matrices must satisfy the following properties (i,j = 1, ..., n):

o All entries have to be in the interval [—1, 1]: —1 < p; <1

e The diagonal terms of a correlation matrix are equal to one: p; = 1

e The matrix has to be symmetric: p; = pj;

e The matrix has to be positive semidefinite, i.e., the variance of any portfolio with correla-
tion matrix p, is non-negative: VW, Vo3 = (2)" p(Z)Z > 0, where W = w1, ..., w, is
the array of weights of the portfolio, V = vy, ..., v, is the array of standard deviations
of the returns, Z = w vy, ..., w,v, and T denotes transpose of a matrix.

In financial applications, correlation matrices are most commonly estimated from the
historical data. Another way is to get implied correlations, i.e. to calibrate a model using
market prices of correlation-dependent derivatives in the same way implied volatilities are
obtained from options quotes. The advantage of the first approach is that typically more
data is available for its implementation. The drawback—it is backward looking. The second
approach has less data, but it is forward looking.

6.3 PERTURBING THE CORRELATION MATRIX

In order to estimate correlation risk we need an ability to generate a random sample of
correlation matrices, so that we can analyze the corresponding distribution of portfolio
values, i.e. calculate the correlation VaR. This task is not easy, since a correlation matrix is
a fairly rigid object, especially with respect to the requirement of positive definiteness.

In this section we will discuss four different approaches to perturbing the correlation
matrix: bootstrapping, element-wise perturbation, perturbation with the help of angle
parametrization of the Cholesky matrix, and perturbation of the eigen-values.

6.3.1 Bootstrap method

The bootstrap methodology is a Monte Carlo resampling method. It was introduced by
Efron (1979). Suppose that we want to estimate the density of the correlation p between
two random variables X and Y based on historical observations {X;, Yi}fvz - The basic
bootstrapping algorithm to create a distribution for p is as follows.

1. Generate N uniform i.i.d. random integers ny, n, ..., ny in the interval [1, N].
2. Create a sample X = {(Xn;, Y,,[,}fv=l using the ny, ..., ny.

3. Calculate p using the sample X.

4. Repeat the previous steps M times with M being a large number.
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Instead of drawing single values from observations, one can use block bootstrap. This
means that the data is split into blocks of length m and the above procedure is applied.
Fengler and Schwendner (2003) used blocks of length m = 3. They quantify the error in
the correlation estimates from historical data by approximating the asymptotic distribution
of the correlation via block bootstrapping. The bootstrapped correlation distributions are
then mapped on prices of three standard types of multi-asset options: a basket option, mini-
mum option and maximum option. Bid-ask spreads of the prices are computed at statistical
quantiles of the resulting price distributions.

6.3.2 Perturbing individual correlations

Turkay et al. (2003) propose perturbing the correlation matrix locally to a desired target
matrix while ensuring that the irrelevant correlations remain the same, and the new correla-
tion matrix remains positive semi-definite. They obtain an analytical solution for the bounds
of a single correlation term of a positive semi-definite correlation matrix. The methodol-
ogy is based on the elegant idea of re-ordering of the assets that define the matrix and
applying the Cholesky decomposition to localize the perturbation to the last entries in the
Cholesky matrix. They also present an iterative application of the single correlation stress
test methodology in order to stress a number of correlations.

6.3.3 Perturbing angles in the angle representation of the correlation matrix

The Triangular Angles Parametrization (TAP) parametrization of the correlation matrix
through a unique set of angles was put forward in Brigo et al. (2002). This is an extension
of results proposed in Rebonato and Jéackel (2000), which were the first to apply the results of
Pinheiro and Bates (1996) in a financial context. See also Geman and Souveton (1997).

The essential idea is that the correlation matrix can be parameterized through a unique
lower-triangular matrix, where the entries are angles taking values in [0, 7r]. This angle-
representation maps to a Cholesky matrix from which we can compute the correlation
matrix. The good thing about this approach is that we automatically satisfy the correlation
constraints specified in Section 6.2.

We start with the Cholesky decomposition of the correlation matrix (see Section 6.2). In
this decomposition the correlation matrix p is represented as a product of a lower-triangular

matrix L and its transpose:
N
pij = Zlikljk
k=1

The elements of the lower-triangular matrix L are then parameterized in terms of cosines
and sines of N(N — 1)/2 angles 6;; (j < i) between 0 and 7.

cosb; ; j:lsiné-k <
ijz{ Hlicyint s ©.1)

H;{;ll Sil’l Oik ] =1
The angles are found via a robust and efficient procedure which makes the whole approach

very attractive. Moreover, through these angles the space of all correlation matrices is
covered.
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One implication of having the angle representation of correlation matrices is that if we
have an algorithm to sample the angles, then we also have an algorithm to sample the
correlations with some width around the base correlations, thus providing an alternative
way to generate the correlation VaR.

The simplest algorithm for generating distribution of correlation matrices is to generate
random angles 0;; around the base angles 98 with some distribution 7 (6; j|9i0j), which is
symmetric and centered around the base-correlation 91'01' for every i, j. Random angles are
simulated using the historical distribution. From our analysis we find that the angles tend to
be distributed around the mean, with a standard deviation in the order of o = 5 %. Based
on this analysis we propose two perturbation methods. In the first approach we perturb all
angles using one standard normal variate z ~ N (0, 1),

~ b b/

0;j = arctan(tan(6;; + 5)(1 +02)+ ) 6.2)

In the second approach all angles 6;; are perturbed by i.i.d. standard normal variates z; ~
N(O, 1),

A

d:; = arctan(tan(6;; + %)(1 +oz) + % (6.3)

6.3.4 Perturbing eigenvalues

In this section we consider the generation of random correlation matrices around the base
correlation matrix through the perturbation of eigenvalues. We can express the correlation
matrix in terms of its eigen-system (A, V') via

n
Pij = Z Vik A Vi
k=1

where Ay = Ay is the diagonal matrix with the eigenvalues A; on the diagonal. We
assume that the eigenvalues by A > A, > ... A, > 0. Furthermore the eigenvalues satisfy
the constraint ) ;_, A; = n.

We consider the following four algorithms to perturb the eigenvalues. The first algorithm
is as follows.

1. Generate n i.i.d random standard normal variates z; ~ N(0,0;), i =1, ..., n)
2. Compute the perturbed eigenvalues

)Ani = )\.iedizi
The other three algorithms are variations of the following algorithm.
1. Generate a random index K € [1, ..., n] according to some distribution p; > 0 with

Yioipi=1

2. Generate an i.i.d. standard normal variable z ~ N (0, 1).
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3. Compute the perturbed eigenvalue Ag
Ak = AgeK?

The three cases we will consider are
1. Perturb the largest eigenvalues more: p; = 2

W
2. Perturb the eigenvalues uniformly: p; =
3. Pick one specific eigenvalue: p; = dix

1
n
Having perturbed eigenvalues, we define the perturbed correlation matrix via

n
pij =Y VikhuV
ki=1

where Ay = g8y is the diagonal matrix with the perturbed eigenvalues Ai. To ensure that

Y 'y pii =n we need to renormalize the random correlation matrix p:
< Pij
Pij = =
PiiPjj

6.4 CORRELATION VAR

The question we want to ask is the sensitivity of the value of a trade or portfolio to the
correlation matrix. To this end we need an efficient and practical method to perturb the
correlation matrix. We will use the methods discussed in the previous section to compute
the sensitivity of a portfolio to correlation.

As we mentioned above, how we perturb the correlations, i.e. what probabilities we attach
to a particular perturbation of the correlation matrix, is an important and difficult choice.
We will take a practical point of view here and leave the more satisfying theoretical results
for a future work.

In calculating the correlation VaR, we will perturb the correlation matrix according
to some perturbation scheme, which effectively means that we have some distribution
7(p|p°) and compute the density for the portfolio value as a function of the correlation as
follows.

7(v) = / 5(v = V(p)m(plp”)dp (64)

From this we can then determine the correlation VaR.

6.5 SOME EXAMPLES

In this section we apply the above methodology to the valuation of a typical energy derivative
subject to correlation inputs. We value a hypothetical power plant with a switching capability
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between the gas and oil. The value of the power plant is modeled by the following strip of
spread options:

m=N
V= Q{ > HPST + H,;ffs,sz} (6.5)
m=1

where HS" and HO are the numbers of on-peak and off-peak hours in month m and SO
and SO are the spread options for month m, whose payoff for month m is given by

§°" = max{P*" — HR¢G, P*" — HR¢F, 0} (6.6)
5T = max{ P*" — HRGG, P°" — HRf F, 0} (6.7)

Here P°" and P° are the on-peak and off-peak power prices, G is the gas price, F is the
oil price and HR;, HRf are the heat rates for gas and oil respectively. For simplicity we
ignore variable costs and assume zero interest rates.

We value the power plant on 1 January 2006, over the period of calendar year 2007. The
inputs listed in Table 6.2 include forward on-peak and off-peak prices, gas and oil forward
prices, volatilities for on-peak, off-peak power, gas and oil. For the current example we
have N = 12 and the amount Q of MW is set to Q = 100.

For a given correlation matrix p we compute the value of the power plant using a Monte
Carlo simulation. We repeat this for a sample of random correlation matrices using one of
the methods described in the previous sections. Using Eq. (6.4), we then compute the density
of the value V in Eq. (6.5). In order to get a distribution of the eigenvalues or the angles,
we perform a bootstrap on historical prices. Based on this analysis, we make the assumption
that the eigenvalues have a lognormal distribution and generate the random angles using
Eq. (6.3).

The base correlation matrix p?j is calculated from historical returns of forward prices.
We use three years of historical data. Given the base correlation matrix we can compute the
corresponding Cholesky decomposition and the lower-triangular angle matrix 6;;. In order
to estimate the variations of the angles, we compute the angles using a sliding window. We
calculated the correlation matrix and the corresponding angle matrix for every year using
that year’s data. In general we find that the standard deviation of the angles is in the order
of 5%. We will use this number to perturb the angles.

We apply the methods we discussed earlier to simulate correlation matrices and compute
the density of the power plant values as a function of the correlation perturbations. In
Table 6.1 we give the mean, standard deviation, and 95 % left VaR for the power plant
value as a function of the different methods that we discussed in this chapter. We use 1000
simulations of correlation matrices, and 10000 simulations in the underlying Monte Carlo
to evaluate the V. The corresponding histograms are in Fig. 6.1. From these histograms
it is clear that the distribution of the basket values depends on the method of perturbing
the correlation matrix. If we choose a uniform density over the eigenvalues the smallest
eigenvalues gets too much weight and the density is very narrow. As we put more weight
on the larger eigenvalues the density will widen. The case where we only perturb the largest
eigenvalue can be considered as the worst-case scenario. As for the perturbation through
the angles we see that, as expected, the case with a correlated perturbation of the angles
leads to a wider distribution of the value.
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Table 6.1 Power plant with value 15.8 MM . Sample size is 1000

Method Largest eigenvalue Weighted eigenvalues Uniform eigenvalues
Mean (MM) 15.81 15.80 15.81
Standard deviation (MM) 0.23 0.17 0.09
95 % CorVaR (MM) 15.41 15.53 15.66
Method Parallel shift angles Uncorrelated angles Bootstrap
Mean (MM) 15.79 15.82 16.04
Standard deviation (MM) 0.67 0.22 0.65
95 % CorVaR (MM) 14.69 15.47 15.01
Table 6.2 Forward prices and volatilities inputs for the valuation of a power plant
Contracts Power Power Gas Oil On peak  Off peak  Gas vol  Oil vol
on-peak off-peak vol vol
1/1/2007 100 70 102 50.5 0.83 0.71 0.64 0.27
2/1/2007 90 65 9.4 48 0.69 0.59 0.67 0.27
3/1/2007 80 60 8.4 50 0.65 0.55 0.69 0.26
4/1/2007 80 56 8.2 50 0.50 0.43 0.42 0.26
5/1/2007 75 50 7.5 51 0.52 0.44 0.40 0.26
6/1/2007 85 54 6.8 50 0.54 0.45 0.40 0.26
7/1/2007 110 70 6.5 49 0.58 0.49 0.40 0.25
8/1/2007 105 70 6.4 50 0.58 0.49 0.40 0.25
9/1/2007 90 60 6.6 49 0.52 0.44 0.42 0.25
10/1/2007 85 61 7 49.2 0.51 0.43 0.44 0.24
11/1/2007 93 65 9 49 0.51 0.43 0.48 0.24
12/1/2007 102 78 10.8 495 0.51 0.43 0.47 0.24
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Figure 6.1 We plot the histograms for the value of the power plant with all different methods
discussed in the article. The sample size is 1000
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Figure 6.2 Comparison of the three different cases: bootstrap, largest eigenvalue, parallel shift
angles. The graph shows the results for the power plant value

In Fig. 6.2 we compare the bootstrap method with the largest eigenvalue perturbation and
the parallel shift of angles for the two examples we consider. It shows that the distribution
of the bootstrap case is wider than the case of the other two methods.

6.6 DISCUSSION AND CONCLUSIONS

We have described various methods to perturb the correlation matrix and compute the corre-
lation VaR. The simplest method is the bootstrap method, which is essentially a resampling
of the historical timeseries. The second method involves the local perturbation of the cor-
relation matrix elements. The third method uses a perturbation of the correlation matrix
through perturbation of the angles in the TAP parametrization. Finally we propose a method
to perturb the correlation matrix via the perturbation of the eigenvalues.

We provide some numerical results for these methods applied to the valuation of a power
plant with two fuels. Different methods lead to different results for the correlation VaR.
This is not surprising since there is clearly a lot of freedom in the choice of perturbations
and underlying densities. Given this freedom, it would be natural to argue in favor of
using the simplest method, the bootstrapping of the correlation matrix. However, there is a
clear advantage in having a perturbation method with a readily available control parameter.
Among other benefits, such a method is very useful for devising and carrying out stress
testing. Needless to say, both the angle and eigenvalue perturbation methods do provide
such control parameters.

To summarize, the present work shows that the use of some parameterized method, be
it angles or eigenvalues, gives us a convenient tool to stress-test complicated portfolios of
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instruments and to do it in a well-defined manner. A consistent application of the correlation
VaR measures described in this chapter improves our understanding of product sensitivity
to correlation and provides us with a useful approach to product comparison.’
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7
Precaution and a Dismal Theorem:

Implications for Climate

Policy and Climate Research

Gary W. Yohe and Richard S. J. Tol

7.1 INTRODUCTION

Economic efficiency has long been a gold standard for evaluating policies. In the context
of climate change, the search for efficient solutions to the policy problem began in earnest
with Nordhaus (1991), and it has evolved into using elaborate, regionally disaggregated
integrated assessment models to judge the relative expected benefits and costs of various
policy options across a wide range of possible futures. Cline (1992, 1997, 2004), Maddison
(1995), Nordhaus (1991, 1993, 1994), Nordhaus and Yang (1996), Nordhaus and Boyer
(2000), Roughgarden and Schneider (1999), Stern et al. (2006), Tol (2002) and Uzawa
(2003) are all examples of this approach. These and many other studies are fundamentally
optimization exercises, and many use Monte Carlo simulations to set the expected marginal
benefits of emission reduction equal to its expected marginal cost. This is why calculations
of the social cost of carbon (SCC) have become so popular.'

It is widely known that published estimates of the social cost of carbon vary widely. An
early survey conducted by Tol (2005) reported that fully 12 % of then available published
estimates were non-positive. Their median was $13 per tonne of carbon, and their mean was
$85 per tonne. Tol (2007) offers an updated survey of more than 200 estimates. His new
results show a median for peer-reviewed estimates with a 3 % pure rate of time preference
and without equity weights of $20 per tonne of carbon with a mean of $23 per tonne of
carbon. Moreover, he reports a 1 % probability that the social cost of carbon could be higher
than $78 per tonne given the same assumptions, and he notes that the estimates increase
rapidly as the assumed discount rate falls. Tol (2007) thereby suggests at least one reason
why the range of estimates of the social cost of carbon is so large.
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Hope (2006) provided some additional insight derived from exercising his PAGE2002
model. He reported that the choice of discount rate and the incorporation of equity weights
are extremely important, and both lie within the purview of decision-makers. High discount
rates sustain low estimates because future damages become insignificant. Conversely, low
discount rates produce high estimates because future damages are important. Meanwhile,
strong equity weighting across the globe support high estimates because poor developing
countries are most vulnerable. Alternatively, weak or no equity weighting can produce low
estimates because poor developing countries do not factor heavily in the overall calculation.
Hope (2006) concluded, however, that the climate sensitivity (i.e. the increase in global
mean temperature that would result from a doubling of greenhouse gas concentrations from
pre-industrial levels) is the largest source of variation. It is possible to derive high estimates
for the social cost of carbon even if with low discount rates and/or almost no equity weight-
ing. All that is required is the assumption that the climate sensitivity lies at the high range
of the latest range of estimates.”

For present purposes, it is enough to recognize that the range of estimates of the SCC
of carbon is enormous for a variety of reasons — some related to decisions that human
beings make in their decision process, and some related to decisions over which “Mother
Nature” has purview. As a result, the cost-benefit approach to climate policy has long been
vulnerable to concerns about its ability to handle adequately the scope of the underlying
uncertainties and diversities of opinion.

Results drawn from the optimization approach have also been suspect because many of
the potential impacts of climate change (particularly non-market impacts and low-probability
but high consequence ramifications of abrupt climate change) cannot easily be quantified in
economic terms. The basis of this critique of incomplete and perhaps infeasible coverage is
best visualized in a matrix presented by Downing and Watkiss (2003) that tracks the degree
to which the complication of climate change science is captured by benefit analysis. Three
rows catalog coverage of scientific uncertainty from relatively well-established (although
still uncertain) trends in climate change (e.g., average temperature, sea level rise) through
considerations of the bounded risks of extreme events (including precipitation events on
both sides of the distribution) and other manifestations of climate variability, and finally
into representations of possible abrupt change and/or abrupt impacts. Three columns cata-
log coverage of economic uncertainty from relatively well-established coverage of market
impacts through less robust economic assessments of non-market impacts, and into socially
contingent impacts (e.g. abrupt social, political or economic changes driven by famine,
migration across national borders, etc.) across multiple metrics that cannot always be quan-
tified in economic terms. Yohe and Tirpak (2008) report that the economic analyses required
to inform fully the cost-benefit approach to global climate policy has adequately covered
very few of the nine combinations and permutations in the matrix.

It must be emphasized, however, that neither of these sources of concern about the appli-
cability of the cost-benefit apparatus to climate policy is really new. Indeed, both have
long histories in the literature. Early on, authors like Alcamo and Kreileman (1996), Toth
et al. (1997) and Swart et al. (1998) responded to them by arguing in favor of taking a
precautionary approach to climate policy — i.e., defining the boundaries of “tolerable” cli-
mate impacts calibrated in terms of temperature targets (both absolute levels and sometimes

2 One might, for example, take climate sensitivity to be greater than 5°C and only be at the 80th percentile of the
distribution reported in Andronova and Schlesinger (2001).



Precaution and a Dismal Theorem 93

rates of change) and working from there. In this context, policy designers ask economists
simply to calculate emissions (reduction) paths that would avoid the proscribed boundaries
of climate change at minimum expected cost.> Wigley et al. (1996) and Manne and Richels
(1997) are perfect examples of this type of analysis.

Many of the remaining issues for the precautionary approach pertain to defining the
boundaries of tolerable climate change (or, in the parlance of the United Nations Framework
Convention on Climate Change, the boundaries of “dangerous anthropogenic interference
with the climate system”) and coping with adaptation; see, for example, Yohe and Toth
(2000). It must be noted as well, however, that the precautionary approach is not immune
from its own vulnerability to enormous uncertainty. Both Stern et al. (2006) and the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change in Yohe ef al. (2007)
and elsewhere in and (IPCC 2007a, 2007b) make it clear that limiting atmospheric concen-
trations of greenhouse gases to any specific level cannot guarantee that increases in global
mean temperature will be held below any target identified as the boundary of “dangerous”
climate change regardless of how it is identified.

7.2 A NEW SOURCE OF CONCERN: WEITZMAN’S
DISMAL THEOREM

This debate between the cost-benefit approach and the precautionary approach has recently
been informed by a “Dismal Theorem” offered by Weitzman (2007). It shows that profound
uncertainty about fundamental parameters like climate sensitivity cannot be overcome for
any positive rate of risk aversion and any positive rate of pure time preference for any dis-
tribution of events (outcomes) whose moment generating function is infinite and includes
the potential for catastrophic climate impacts (here defined as a prolonged period of falling
welfare per capita). To be more specific, trouble arises for power-law or lognormal distribu-
tions or any distribution with “thick tails” where the probability falls only with a power of
the size of the event. In these cases, the impact or consequence of an event can grow expo-
nentially while the probability falls with a power law so that the expected impact becomes
unbounded. In practice, the theorem draws its significance from our inability to observe the
events in the tails with enough frequency to learn anything useful about relative likelihoods
of associated catastrophic consequences. It follows that uncertainty will dominate any cal-
culation of expected climate damage because Bayesian learning about the critical variables
(even with very strong time discounting) is never strong enough to keep expected marginal
damages finite.

Weitzman’s “Dismal Theorem” clearly casts doubt on results derived from a cost-benefit
approach to climate policy, at least for studies in which the equity implications of declining
marginal utility are recognized. Indeed, Weitzman has suggested that a warning label be
attached to integrated assessment models that rely on the cost-benefit approach — something
like “Warning: To be applied only to non-extreme climate change possibilities”. The Dismal
Theorem marginalizes the debate over the social cost of carbon and the associated discus-
sions about what makes estimates high or low because it means that all of the existing

3 Because tolerable boundaries are typically defined in terms of temperature limits and because temperature change
depends, to a first approximation, on cumulative emissions over long periods of time, the appropriate economic
response can be visualized by solving for an initial shadow price for carbon (and other warming gases) with the
expectation that it would increase over time at an endogenously determined rate of interest.
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estimates are infinitely too small. It similarly renders obsolete the current obsession of some
of the scientific community for reaching model-based consensus on central tendencies about
climate change.* The action is, quite simply, in the dismal tails.

On the positive side, the result indicates that the value of some types of information is far
greater (and perhaps infinitely greater) than the value of other information. It can therefore
offer some guidance on where to devote scarce research resources in climate and policy
science. Moreover, it seems to offer sound theoretic footing for a generalized precaution-
ary approach designed explicitly to examine and clarify the definition of tolerable climate
change. More careful examination of these implications suggests that another warning label
needs to be written, but more on that later.

Before proceeding to make that point, it is important to focus on one important condi-
tion of the Dismal Theorem — that decision-makers view the world with some aversion to
risk (and thus some aversion to inequality).” We could therefore find our way around the
Dismal Theorem by simply asserting that policymakers should always proceed as if they
were completely risk-neutral. Doing so would, however, mean rewriting much of current
economic policy; and doing so only in the climate arena would mean that the United Nations
Framework Convention on Climate Change would have to be completely overhauled.

Since neither of these responses will be accepted by the policy community, there is no
easy way to dismiss the implications of the Dismal Theorem for climate policy and climate
science. To explore these implications a little more fully, it is appropriate to contemplate its
applicability in a few different cases. Tol (2003), for example, worked within a cost-benefit
framework that recognized multiple regions with and without equity weighting. Even with-
out recognizing the consequences of thick tails in the distribution of climate sensitivity, his
Monte Carlo simulations noted the small but non-zero probability that marginal utility could
grow infinitely large in one or more regions where even “routine” climate change, particu-
larly when it materializes in the form of declining precipitation, can drive economic activity
to subsistence levels. As long as these regions were given non-zero weight in the expected
utility calculation, their plight would dominate the policy calculus because expected marginal
damages would approach infinity. This was, perhaps, a precursor of the Dismal Theorem.

7.3 IMPLICATIONS OF THE “DISMAL THEOREM”

Yohe (2003) suggested that the problem highlighted in Tol (2003) could be overcome by
implementing a second policy instrument designed to maintain economic activity above
subsistence levels everywhere — a foreign aid program designed simply to prevent eco-
nomic collapse anywhere in real time. Tol and Yohe (2007) examined this suggestion
within the original modeling framework and found that, with sufficient aid, the issue of
infinite marginal damage could be avoided. While this work did not envision events char-
acterized in the fat tails of climate sensitivity, it nonetheless suggests that timely social or

4 Evidence of this obsession is seen in IPCC (2007a) where the potential contributions of Greenland Ice Sheet
melting and collapse of the West Antarctic Ice Sheet from sea level rise estimates were deleted (even though they
had been included in IPCC (2001) because there was no model based scientific consensus that could explain what
is going on (IPCC, 2007a). In the logic of the Dismal Theorem, this makes the ice sheets more policy relevant,
not less.

5 This assumption is captured simply by allowing the marginal utility of consumption to rise indefinitely as
consumption falls to a subsistence level (and to fall as consumption rises beyond the range currently experienced
by developed economies).
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economic interventions that effectively “lop off the thick tails” of regional climate impacts
could undercut the power of the Dismal Theorem. If, however, the impacts of the profound
uncertainty were felt globally so that no country or region would have the wherewithal to
underwrite the subsistence of another, then the Dismal Theorem could still persist. It is here,
therefore, that a generalized precautionary principle — the logical implication of the Dismal
Theorem — comes into play.

Can the Dismal Theorem inform the boundaries of precaution? To answer this question,
it is important to recognize that these boundaries can be defined in many different ways.
Put another way, policymakers are not confined to Bayesian learning about the climate
sensitivity and other critical parameters in climate models, and this is a good thing. Roe
and Baker (2007) show, for example, that “the probability of large temperature increases”
is “relatively insensitive to decreases in uncertainties associated with the underlying climate
processes”. Allen and Frame (2007) responded by arguing that it was pointless for policy
makers to count on narrowing this fundamental uncertainty. Rather than tilting at this (and
other similar) windmill(s) like Don Quixote, perhaps the policy community should ask the
research community to develop greater understandings of the fundamental processes in other
areas — processes that produce catastrophic impacts from whatever climate change happens
to materialize, for example. Even if they cannot rely on the scientific community to reduce
the range of “not implausible” scenarios in the temperature domain, they could ask it to (1)
explore the triggers of more regional catastrophe, (2) identify the parameters of fundamental
change that define those triggers, (3) contribute to the design of monitoring mechanisms that
can track the pace of change relative to these triggers, and (4) conduct small- and large-scale
experiments in models, laboratories and perhaps the real world to learn more about the
relevant processes. Assuming that the rate of change of these manifestations of climate
change could be calibrated to something like the pace of change in global mean temperature,
it might then be possible to calibrate some of the fuzzy and politically determined boundaries
of “dangerous anthropogenic interference”.

Three possibilities emerge for this effort. In the first, regional catastrophic impacts are
reversible, but doing so could involve draconian global intervention into the economic
sectors from which greenhouse gas emissions were being released. Given the great inertia
of the climate and political systems, however, affected societies would probably have to
cope with catastrophic impacts for a certain and potentially long period of time. In these
cases, the precautionary principle would tell us to restrict emissions along a least cost
path for a concentration target as a hedge against both the cost of draconian interventions
required to retreat back across the lowest thresholds and the transient costs of enduring
“temporary” catastrophes. Nothing would be certain in the calculation of how vigorously to
restrict emissions, of course, so the expense involved in their reduction would be have to
be seen as an investment in reducing risk — specifically reducing the probability factor in
the “probability times consequence” definition of pecuniary risk. Political decisions about
exactly how much risk might be considered tolerable would have to be taken, and they
would have to evolve as more information about the regional processes became available.

In the second case, one or more of the catastrophic processes is irreversible. Here, the
precautionary principle tells us to hedge more strongly against “falling off a cliff’. The
hedging strategy would presumably impose more stringent emissions reductions much earlier
than contemplated in the first instance, and calls for a geo-engineering solution could be
expected — a strategy with its own risks, to be sure. In the third case, one or more of the
catastrophes is irreversible and unavoidable. In this extreme possibility, preparing for the
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worst in the affected regions would be the only option, and global mitigation policy might
still operate as if one of the other two cases were in force ubiquitously.

To put these three storylines into a “not-implausible” context, consider the collapse of
the Atlantic thermohaline circulation (the THC) as an example of a potentially catastrophic
event across many parts of the globe. The higher the climate sensitivity, the more likely it
becomes and the sooner it might occur. The implications of such a collapse are unknown,
particularly in the socio-economic context, but the planet has experienced another climate
equilibrium in which it does not exist. Three different explanations of the process by which
it might collapse (Keller et al., forthcoming) have been advanced, but each would point to
its own critical parameter for monitoring. Because we do not know the precise process, we
cannot identify the triggering threshold and so we cannot calibrate global policy in terms
of an increase in global mean temperature. Schlesinger et al. (2005) and Yin et al. (2006)
have told us, however, that the THC can collapse in a matter of decades once the trigger is
pulled and that reversal, if possible, would take as long as a century to achieve.

Clearly, fundamental research into process understanding of circulation dynamics makes
more sense in this example than work designed to make marginal changes in the distri-
bution of climate sensitivity. Anticipating progress there, other research could investigate
the sensitivity of least cost approaches to hedging strategies to alternative socio-economic
futures and the evolution of new scientific knowledge. To be clear, the policy commu-
nity would find value in this work only if the scientific community could clarify (1) the
triggering mechanisms, (2) estimate the lag time between the triggers and climatological
commitments to crossing the associated thresholds, (3) devise mechanisms for monitoring
circulation intensity and other factors with enough precision to inform the likelihood of
commitment, and (4) allow statisticians to calculate probabilities of type 1 and type 2 errors
along a range of transient futures based on those monitoring exercises. None of these tasks
involves Bayesian learning about climate sensitivity. That is reassuring, but none of them is
simple either. Faced with an impossibility theorem and persistent uncertainty about climate
sensitivity, however, tackling these difficult problems is the lesser of two evils.

74 SOME CONCLUDING REMARKS

We have argued that integrated assessment models that rely on a cost-benefit approach to
conduce their policy analyses cannot always accommodate profound uncertainties, partic-
ularly in the context of persistent thick tails in the distributions of critical parameters like
climate sensitivity. It should now be clear why the scientific community must move beyond
trying to nail down consensus about the central baseline tendencies of climate change and
embrace (though not exclusively) an organized effort designed to examine the “dark tails” of
our possible futures across the range of possible impacts and associated key vulnerabilities.
Only then can we begin to define the boundaries of tolerable change to support rigorous
analyses of decision-making criteria that account, explicitly, for the enormous uncertainties
that characterize our understanding of the climate system.

What does all of this mean for the social cost of carbon? Cast in the context of an
informed and rigorously defined precautionary approach to policy design, the social cost
of carbon can be viewed as the marginal cost of mitigation at any point in time — i.e.,
the shadow price of the precautionary constraints that reduce the likelihood of catastrophic
impacts to tolerable levels. In other words, the calculation of the social cost of carbon
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would be tied directly to the scarcity rent that minimizes the expected cost of politically
palatable hedging. This is not necessarily an easy calculation, but there is some good news.
Climate sensitivity would not be an issue because the social cost of carbon would be tied
to the marginal cost of meeting a concentration target (though the distribution of climate
sensitivity would be involved in the discussions that try to translate temperature targets
into concentration limits). The discount rate would not be an issue either, because the rate
applied to other public investments and not the one that ponders the ethical complications of
intergenerational equity would now apply. Indeed, this calculation would exclude some of
the sources of uncertainty that explain the enormous range of social cost of carbon estimates
noted above. However, issues like valuation and equity weighting do not go away, as they
are essential ingredients to the definition of what constitutes a catastrophic impact.

We hope to have shed some preliminary light on the “So what?” implications of the
Dismal Theorem on the design of climate policy and climate research. We now turn to the
warning label that we promised. The Dismal Theorem is derived from taking limits, so it
is tempting to take its conclusion to its logical extremes. One might, for example, read the
Dismal Theorem as saying that the value of some improved information about what might
be going on in the thick tail of the climate sensitivity distribution is infinite. If that is so, then
we need to do as much as we can to sharpen the climate signal by, for example, burning
as much coal as quickly as we can. One might also apply the generalized precautionary
principle to all social issues for which there are unfortunate consequences in the fat tails of
the distributions of critical variables because expected marginal damages are infinite for all
of them. But then, how should we set priorities for distributing the planet’s finite resources
in the social interest? The economic tradeoffs would simply be undefined. Because neither
of these implications is particularly attractive, we offer a concluding warning label on the
Dismal Theorem: “Warning: Not to be taken to its logical extreme in application to real
world problems.”

Acknowledgements

The authors gratefully acknowledge the contributions of Martin Weitzman in the preparation
of this chapter, as well as the comments offered by participants in the Climate Change
Impacts workshop in Snowmass, Colorado in the summer of 2007. All remaining errors
reside with the authors.

7.5 REFERENCES

Alcamo, J. and E. Kreileman (1996). Emissions Scenarios and Global Climate Protection. Global
Environmental Change 6, 305-344.

Allen, M. and D. Frame (2007). Abandon the Quest. Science 328, 582-583.

Andronova, N.G. and M.E. Schlesinger (2001). Objective Estimation of the Probability Density Func-
tion for Climate Sensitivity. Journal of Geophysical Research 106, 605—-622.

Cline, W.R. (1992). The Economics of Global Warming . Institute for International Economics: Wash-
ington, D.C.

Cline, W.R. (1997). Modelling Economically Efficient Abatement of Greenhouse Gases, in Y. Kaya
and K. Yokobori (Eds): Environment, Energy, and Economy. United Nations University Press:
Tokyo, 99-122.



98 Risk Management in Commodity Markets

Cline, W. R. (2004). Meeting the Challenge of Global Warming. National Environmental Assessment
Institute: Copenhagen.

Downing, T. and P. Watkiss (2003). The Marginal Social Costs of Carbon in Policy Making: Applica-
tions, Uncertainty and a Possible Risk Based Approach. Paper presented at the DEFRA International
Seminar on the Social Costs of Carbon, July 2003.

Hope, C. (2006). The Marginal Impact of CO2 from PAGE2002: An Integrated Assessment Model
Incorporating the IPCC’s Five Reasons for Concern. Integrated Assessment 6, 1-16.

Intergovernmental Panel on Climate Change (IPCC) (2007a). Climate Change 2007: The Science.
Contribution of Working Group I to the Fourth Assessment Report, Cambridge University Press:
Cambridge, UK.

Intergovernmental Panel on Climate Change (IPCC) (2007b). Climate Change 2007: Impacts, Adap-
tation and Vulnerability. Contribution of Working Group 11 to the Fourth Assessment Report, Cam-
bridge University Press: Cambridge, UK.

Keller, K., G.W. Yohe and M.E. Schlesinger (forthcoming). Managing the Risk of Climate Thresholds:
Uncertainties and Information Needs. Climatic Change.

Maddison, D.J. (1995). A Cost-Benefit Analysis of Slowing Climate Change. Energy Policy 23, (4/5),
337-346.

Manne, A. and R. Richels (1997). On Stabilizing CO, Concentrations — Cost-effective Emission
Reduction Strategies. Environmental Modeling and Assessment 2, 251-266.

Nordhaus, W. (1991). To Slow or Not to Slow: The Economics of the Greenhouse Effect. Economic
Journal 101, 920-937.

Nordhaus, W.D. (1993). Rolling the “DICE”: An Optimal Transition Path for Controlling Greenhouse
Gases. Resource and Energy Economics 15, 27-50.

Nordhaus, W.D. (1994). Managing the Global Commons: The Economics of Climate Change. The
MIT Press: Cambridge, MA.

Nordhaus, W.D. (2007). Critical Assumptions in the Stern Review on Climate Change. Science 317,
201-202.

Nordhaus, W.D. and Z. Yang (1996). RICE: A Regional Dynamic General Equilibrium Model of
Optimal Climate-Change Policy. American Economic Review 86: 4, 741-765.

Nordhaus, W.D. and J.G. Boyer (2000). Warming the World: Economic Models of Global Warming.
The MIT Press: Cambridge, MA.

Roe, G. and M. Baker (2007). Why is Climate Sensitivity so Unpredictable? Science 328, 629-632.

Roughgarden, T. and S.H. Schneider (1999). Climate Change Policy: Quantifying Uncertainties for
Damages and Optimal Carbon Taxes. Energy Policy 27, 415-429.

Schlesinger, M.E., J. Yin, G. Yohe, N.G. Andronova, S. Malyshev and B. Li (2005). Assessing
the Risk of Collapse of the Atlantic Thermohaline Circulation, in J. Schellnhuber, W. Cramer,
N. Nakicenovic, T. Wigley, and G. Yohe (Eds) Avoiding Dangerous Climate Change: A Scientific
Symposium on Stabilisation of Greenhouse Gases. Cambridge University Press: U.K. Meteorological
Office, Exeter, U.K., 37-47.

Stern, N.H., S. Peters, V. Bakhshi, A. Bowen, C. Cameron, S. Catovsky, D. Crane, S. Cruickshank,
S. Dietz, N. Edmonson, S.-L. Garbett, L. Hamid, G. Hoffman, D. Ingram, B. Jones, N. Patmore, H.
Radcliffe, R. Sathiyarajah, M. Stock, C. Taylor, T. Vernon, H. Wanjie and D. Zenghelis (2006). The
Economics of Climate Change: The Stern Review. Cambridge University Press, Cambridge, UK.

Swart, R., M. Berk, M. Janssen, E. Kreileman, and R. Leemans (1998). The Safe Landing Approach:
Risks and Tradeoffs in Climate Change, in J. Alcamo, R. Leemans, and E. Kreileman (Eds): Global
Change Scenarios of the 21°" Century — Results from the IMAGE 2.1 Model. Pergamon/Elsevier
Science: Oxford: 193-218.

Tol, R.S.J. (2002). Welfare Specifications and Optimal Control of Climate Change: An Application of
FUND. Energy Economics 24, 367-376.

Tol, R.S.J. (2003). Is the Uncertainty about Climate Change Too Large for Expected Cost-benefit
Analysis?. Climatic Change 56, 265-289.



Precaution and a Dismal Theorem 99

Tol, R.S.J. (2005). The Marginal Damage Costs of Carbon Dioxide Emissions: An Assessment of the
Uncertainties. Energy Policy 33, 2064—-2074.

Tol, R.S.J. (2007). The Social Cost of Carbon: Trends, Outliers and Catastrophes. Economics Discus-
sion Papers, http://www.economics-ejournal.org/economics/discussionpapers/2007—44.

Tol, R.S.J. and G.W. Yohe (2007). Infinite Uncertainty, Forgotten Feedbacks, and Cost-Benefit Anal-
ysis of Climate Change. Climatic Change 83, 429—-442.

Toth, F.L., H.-M. Fussel, M. Leimbach, G. Petschel-Held and H.-J. Schellnhuber (1997). The Tolerable
Windows Approach to Integrated Assessment, O. K. Cameron, K. Fukuwatari and T. Morita (Eds),
Climate Change and Integrated Assessment Models (IAMs) — Bridging the Gaps. Center for Global
Environmental Research, National Institute for Environmental Studies: Tsukuba, Japan, 401-403.

Uzawa, H. (2003). Economic Theory and Global Warming. Cambridge University Press: Cambridge,
UK.

Weitzman, M.L. (2007). The Role of Uncertainty in the Economics of Catastrophic Climate Change.
http://www.economics.harvard.edu/faculty/Weitzman/papers/Catastrophe.pdf.

Wigley, T., R. Richels and J.A. Edmonds (1996). Economic and Environmental Choices in the Stabi-
lization of Atmospheric CO, Concentrations. Nature 379, 240-243.

Yin, J., M.E. Schlesinger, N.G. Andronova, S. Malyshev and B. Li (2006). Is a Shutdown of the
Thermohaline Circulation Irreversible? Journal of Geophysical Research.

Yohe, G.W. (2003). More Trouble for Cost-benefit Analysis. Climatic Change 56, 235-244.

Yohe, G. and Toth, F. (2000). Adaptation and the Guardrail Approach to Tolerable Climate Change.
Climatic Change 45, 103—128.

Yohe, G.W., R.D. Lasco, Q.K. Ahmad, N. Arnell, S.J. Cohen, C. Hope, A.C. Janetos and R.T.
Perez (2007). Perspectives on Climate Change and Sustainability. M.L. Parry, O.F. Canziani, J.P.
Palutikof, C.E. Hanson and P.J. van der Linden (Eds): Climate Change 2007: Impacts, Adapta-
tion and Vulnerability. Contribution of Working Group Il to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge.

Yohe, G. and D. Tirpak (2008). A Research Agenda to Improve Economic Estimates of the Benefits
of Climate Change Policies. Integrated Assessment Journal 8, 1-17.






8
. Incentives for Investing in Renewables

Paolo Falbo, Daniele Felleti and Silvana Stefani

8.1 INTRODUCTION AND BACKGROUND

Electricity markets, once strongly characterized by direct government intervention and fre-
quently implemented by vertically integrated public enterprises, have been subjected to
radical transformation throughout the world. Reforms have introduced a new institutional
framework intended to ease competitive entry, to provide incentives to efficiency in the
generation, transmission, distribution and retailing of output, and also to reduce tariffs and
allow direct access to producers to the market. Within this new industrial framework and as
a result of the relevant pressure originating from social, economic and political issues, an
efficient electricity generation portfolio mix is becoming a strategic issue for all power pro-
ducers (probably, the strategic issue). The matter is particularly important for Italy, where
the demand for energy continues to rise ahead of the European average, and undercapacity
has driven prices higher than those seen in other major European countries. This moti-
vates research into the impact of Renewable Energy Sources (RES) on current portfolio
mix, which at present is based, at least in Italy, mainly on fossil fuels. From an economic
perspective, RES offer an important diversification opportunity as their marginal costs are
negligible. This leads us to consider wind as a key renewable source to be analyzed next
to more traditional fuels (coal, gas and oil), and to frame the analysis of profit functions in
expected return/risk terms as long as risk is evaluated in an integrated approach. Under an
integrated risk analysis, not only the degree of dependence of prices on alternative energy
sources is relevant, but equally relevant are the optimal allocation of electricity quantity
to sell spot, the cost of input for conventional energy, and as well as the estimates of
the wind distribution volumes to be used for electricity generation and the evaluation of
the spark spread option embedded in the producer profit function to generate conventional
energy.

However, when comparing the profitability of renewable and conventional plants, invest-
ment costs play a critical role, since a renewable plant is significantly more expensive than a
conventional one. Moreover, the effective production of a renewable plant is just a fraction
of the nominal installed capacity (i.e. the maximum producible capacity) since its profit
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stream is largely driven by weather conditions.! On the other hand, if there is a rise of fuel
price, necessary to generate conventional energy, the earnings from renewable can become
competitive. In fact, deployment of renewable energy technologies can reduce natural gas
demand and thus put downward pressure on natural gas prices, since they need not rely on
volatile supplies of fuel (Sovacool and Cooper, 2006). In 2004 wind production generated
a spare in fuel in Europe of about five billion euros (EWEA, 2005).

In any case, at least so far, renewable power must be subsidized to be competitive. There is
a debate about whether fixed price incentives (like capital subsidies) can support renewables
better than market-based incentives (like Green Certificates) (EWEA, 2005; Rickerson and
Grace, 2007; Shirkey, 2005; Sovacool and Cooper, 2006). We do not take position, but our
results show that choosing one or another support to renewables is not indifferent and can
have different effects on the integrated risk management producer policy.

In this chapter we identify levels for incentives sufficient to make wind electricity produc-
tion an efficient choice. In other words, we study the conditions under which an investment
in green energy (wind in particular) is profitable, or reaches the expected profitability of
an investment in conventional energy. First, in a risk neutral framework, we compare the
profitability of two plants (a wind plant and a gas plant) and estimate the incentive which
makes the two plants equally (expectedly) profitable. Among the many possible interven-
tions, we consider capital subsidies which reduce the investment cost, feed-in tariffs and
tradeable green certificates (GC), with the duty for producers to produce by renewables a
fraction of their total production. We further assume that the producer, a price taker, can
sell energy in the spot market in a uniform price auction (as in Germany and Italy) and he
can take advantage of the spark spread option embedded in selling conventional energy in
the spot market, i.e. he can shut the plant off if the unit cost of fuel is higher than the spot
price. The prices we determine are a benchmark to define when producers should invest
in green energies. We do not treat here other additional (dis)incentives like CO, emission
certificates or white certificates.

Next, having made renewable and conventional energy equally profitable, we analyze in
an integrated risk setting (Doherty, 2000; Henney and Keers, 1998) the energetic portfolio
mix using VaR (Gaivoronski and Pflug, 2005) as a risk measure.

Statistical estimations are carried on the IPEX (Italy) and EEX (Germany) markets.

Previous research of the authors has focused on several closely related problems. In
Falbo et al. (2008) the optimal portfolio selling mix in conventional production is analyzed.
A price taker producer must decide the quantity of his production capacity to commit to
bilateral contracts (at fixed sale price), offering the remainder to the spot market. Such a
problem evidences the role of the spark spread option that a producer owns, as he can
observe spot prices and can therefore decide to halt production when marginal costs are
higher. The maturity effect of forward contracts to hedge against fuel price volatility is also
considered.

In Falbo et al. (2007) a continuous time bivariate model of two correlated mean reverting
processes is proposed to describe important issues in integrated energy risk management:
hedging in conventional energy production and optimal timing of technical investments.
Since in both problems the decision-maker faces uncertainty both in the price of input

! Only plants with storage, e.g. hydro plants with basin, can hold a desired production, at least in the short run,
under regular weather conditions. New techniques are currently developed to this aim (e.g. compressed-air energy
storage, CAES). Nevertheless any additional energy conversion implies a loss which is usually significant and/or
economically expensive.
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(typically oil, gas or other commodities necessary for production) and in the price of output
(electricity), we show that the positive correlation between input and output prices can be
exploited to help reduce the production risk.

The chapter is organized as follows: the subsidies are illustrated in Section 8.2, the theo-
retical results are in Section 8.3, the empirical application is in Section 8.4, risk is introduced
in Section 8.5, conclusions are in Section 8.6.

8.2 SUBSIDIES FOR ENERGY

At least 64 countries have some type of policy to promote renewable power generation
(REN21, 2007).

There are many other forms of policy support for renewable power generation, including
green certificates, direct capital investment subsidies and rebates, tax incentives and credits,
sales tax and value-added tax (VAT) exemptions, direct production payments or tax credits,
net metering and direct public investment or financing (REN21, 2007). In this chapter we
will focus on three forms of promotion policies, namely capital subsidies, green certificates
and feed-in tariffs.

Renewable energy certificates, also known as “green certificates” (GCs), “green tags” or
“tradeable renewable certificates”, represent the environmental attributes of the power pro-
duced from renewable energy projects and are sold separately from commodity electricity.
Renewable energy plants are entitled to receive GCs, related to the energy produced. GCs
are issued by the national governments with reference to the previous year’s effective pro-
duction or in accordance with the foreseeable quantity of energy that will be produced the
following year by the requesting operator. Each GC represents a certain quantity of energy
for a given year of production (e.g., in Italy, one Green Certificate corresponds to 1 MWh).?
The GC system involves also non-green producers, which actually play a central role. They
are enforced to guarantee an annual target of green energy production which can be fulfilled
by installing renewable energy plants or buying GCs for the corresponding energy. GCs
therefore play a double role: they represent an incentive for green energy producers, but
they mean additional costs for producers lacking the minimal green target (for example in
Italy the annual target for 2006 has been fixed to 3.05 % of the energy produced during the
previous year).

Capital subsidies are the second most common incentive policy applied worldwide. Only
quite recently feed-in tariffs have started to replace them in some countries. Capital subsidies,
through competitive grant application mechanisms, are still available in the UK through the
Low Carbon Buildings Programme and in local and regional schemes in Austria, Germany,
France and the Netherlands. They are a simple form of incentive consisting of a one-time
payment by the national government or a utility to cover a percentage of the capital cost of
a renewable plant investment.

Feed-in tariffs are the most common promotion policy, available in 37 countries and
nine states or provinces worldwide (see REN21, 2007). Feed-in tariffs have noticeably
enhanced innovation and sustained renewable energy investment in many countries. These
policies have received much attention from wind power operators, but have also influenced
solar PV, biomass and small hydro development. Many changes and additions were made
during 2006/2007, particularly in Europe. Citing the REN21 (2007) report: ... Portugal

2 During 2006 the minimum size of GCs in Italy was 50 MWh.
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modified its feed-in tariff to account for technology differences, environmental impacts,
and inflation. Austria amended its renewable electricity law to permit a new feed-in tariff
system. Spain modified feed-in tariff premiums (which are added to base power prices)
to de-couple premiums from electricity prices and avoid windfall profits when electricity
prices rose significantly. And Germany proposed modifications to its “EEG” feed-in law.
Elsewhere, Indonesia revised its feed-in tariff to cover plants up to 10 MW in size, from a
previous limit of 1 MW. Thailand adopted a new feed-in policy for wind, solar, biomass,
and micro-hydro.” This incentive plan has also been made available to individuals. The
above mentioned German Act (EEG) assures a fixed feed-in-tariff for grid-connected solar
electricity over a time span of 20 years (currently about 460 €/MWh, depending on the
kind of system). Despite such differences the common feature of feed-in tariffs remains
the incentive linked to effective energy production in favor of the green operator. Feed-in
tariffs set a fixed guaranteed price at which power producers can sell renewable power
into the electric power network. Some policies provide a fixed tariff while others provide
fixed premiums added to market- or cost-related tariffs. This form of subsidy is easy to
implement, and is administratively is the most cost efficient. In contrast to GCs, feed-in
tariffs do not imply any detriment for non-green producers.

From a product cycle perspective, stimulus of early deployment, following the research
and development phase may probably best be supported by targeted measures such as
capital subsidies, while the green certificates markets will probably provide a more adequate
enhancement to further commercialization before full competitiveness is achieved (Midttun
and Gautesen, 2007).

8.3 THE MODEL
8.3.1 Capital subsidies

Let Cg and Cy be the cost per installed MW for a gas and a wind plant respectively. Let
Ics be the capital subsidies per installed MW for the wind plant. For ease of comparison,
we consider two plants with the same investment cost, so IMW of a gas plant will be
compared to chjcs MW of a wind plant.

As in Falbo et al. (2008) we assume that a producer can produce only when it is prof-
itable,® so he can take advantage of the spark spread option embedded in his profit function.

Thus the hourly profit from the gas plant is

Gg =max (p —¢,0) — Comc 8.1

where
e G is the profit per hour
e p is the hourly spot price for energy

e c is the price of fuel required to produce IMWh of energy

3 We showed that offering in a uniform auction at a bid price equal to marginal cost (i.e. fuel cost ¢) is optimal
for a price taker producer. For a producer with market power this is not true, so that G is a lower bound for his
profits.
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e Coyc are fixed costs and are essentially O&M (operations and maintenance) costs
per hour and per installed MW.

The hourly profit from the wind plant is

C
Gw=—S— (ywp — Couw) (8.2)
Cw — Ics

where
e Gy is the profit per hour
e p is the hourly spot price for power

e yy is the effective performance of the turbine and depends on the wind flow. yy =0
when there is no wind (or the wind is so strong that the turbine must be stopped),
yw = 1 when the wind power is adequate

e Coyw are fixed costs, i.e. O&M costs per hour and per installed megawatt.

The incentive I¢g that equates the expected profits of the plants is:

Ics : E[Ggl = E[Gw]

C
& E[max (p — ¢, 0)] — Copg = — % (Elyw pl — Comw) (8.3)
Cw —Ics

Elyw p] — Comw
Ics =Cy — C
< fes W E[max (p — ¢, 0)] — Comc ¢

8.3.2 Feed-in tariffs

Feed-in tariffs have been introduced to reward real production since capital subsidies reward
the installation of the plant (i.e. its “nominal capacity”), not its efficiency.

One megawatt of a gas plant must be compared to gv“;/ MW of a wind plant to ensure the
same investment.

The profit from the gas plant remains as in Eq. (8.1), while the profit from the wind
plant is

C
Gw = C—G (w (p + pr1) — Couw) (8.4)
w

where pry is the fixed tariff determined by the government.
The same expected profit is reached when

E[Ggl = E[Gw]

C
& E[max (p — ¢,0)] — Comg = é (Elyw pl — Elyw] pri — Comw)

C
& prr= [C—VGV (E[max (p — ¢,0)] — Coug) — (Elyw pl — COMW)}

(8.5)

Elyw]
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Capital subsidies and feed-in tariffs look very similar (we will show they are not); hence
a simple formula relates pr; to Ics:

Ies Elywl pri
Cw  Elyw pl+ Elywl pr1 — Comw

(8.6)

8.3.3 Green certificates

Whenever 1 MWh is produced by the gas plant, K MWh of wind power must be produced or
the same amount of green certificates must be bought. Green certificates for the remaining
(when positive) wind production can be sold. This is the same as selling GCs for the total
wind production and buying GCs for a fraction k of the gas production. If pgc is the GC
price for IMW, the marginal cost of gas production is now ¢ + k pg¢c. So the optimal bid
price in the spot market for a price taker producer is now ¢ + k pgc. In the meantime,
every wind produced MW is now remunerated p + pgc. Without capital subsidies, IMW
gas plant must be compared to g—gMW wind plant. The profits of the plants are respectively
equal to:

Gg =max(p —c—k pcc,0) — Comc 8.7
and
Co
Gw = Co (yw (p + pcc) — Comw) (8.8)

The price for the GC that equates the expected profits is defined below:

pGe - E[Ggl = E[Gw]

< E[max(p —c—kpge, 0] — Comc (8.9)
C
= ﬁ (Elyw pl + Elywlpcc — Comw) &

& E[max(p —c—k pge, 0)]

Co Co
= — Elywlpcc + — (Elyw pl — Couw) + Comc (8.10)
CW CW

With respect to pgc, the first term in Eq. (8.10) is a decreasing function, while the second
term is linear and increasing: thus there is just a unique pgc¢ solution of the equation. This
value is positive if

C
é (Elyw p] — Comw) < Elmax (p — ¢ — k poe, 0)] — Come (8.11)

i.e. if, without incentives, gas plants are more profitable than wind plants.
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8.4 STATISTICAL ESTIMATIONS

We apply the model to German and Italian power markets during year 2006 to compare
different market scenarios. Italian power prices are higher on average, both during base and
peak hours, but in EEX spikes occur more frequently and are much stronger (see Figs 8.1
and 8.2). Figure 8.3 shows gas prices* during 2006.

To evaluate the wind production, we considered whole EON wind production (7800MW
installed all over Germany) for Germany, and a small wind park (22MW installed by Fortore
Energia s.p.a. in Val Fortore, Puglia) for Italy. The average wind production was almost the

€/MWh
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Figure 8.1 2006 power prices. Italian market
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Figure 8.2 2006 power prices. German market

4 Source: Datastream. UK natural gas, 1 day forward.
3 Prices have been converted into €/MWh assuming conventionally that the gas plant has an efficiency of 39 %
(i.e. 39 % of thermal energy produced by combustion of fuel is converted into electricity).



108 Risk Management in Commodity Markets

€/MWh
200 I

150 |
100 IA\'JANA l
50 kl\«.. Y,V = A

—WW \’W\'J\r/\r/ Y WwW N

Feb May Aug Nov

Figure 8.3 2006 gas prices in Europe

same in both cases: E[yw] = 19.01 % of the installed capacity for EON, E[yw] = 19.76 %

for Fortore.
Table 8.1 reports investment and O&M costs for standard wind and gas plants. Table 8.2

reports some estimations and results.°
As far as capital subsidies are concerned, incentives of 77.95 % and 69.11 % over the

wind plant investment cost are required for Italy and Germany respectively.

Table 8.1 Investment and O&M costs for standard gas and wind plants

Gas plant Wind plant
Investment costs (€/kW) Cg 750 Cyw 1500
O&M costs (€/MWh) Comc 35 Couw 5
Table 8.2 Market statistics
Italian market German market
E[p] 74.75 € /MWh 50.79 € /MWh
E[c] 55.76 € /MWh
Elyw] 19.76 % 19.01 %
Elyw p] 15.16 €/MWh 8.64 € /MWh
E[max (p — ¢, 0) 26.54 € /MWh 9.34€/MWh
Ics/Cw 77.95 % 69.11 %
DFI 181.81 € /MWh 42.82€/MWh
PGe 150.06 € /MWh (38.05€/MWh)

For the year 2006 in Italy, GSE issued GCs at a price equal to 125.28€/MWh, but GME
reports a weighted average price for GCs exchanged in the market during 2006 equal to
144.23€ /MWh. This means that the market priced GCs somehow correctly, very close to
our computed benchmark 150.06€/MWh.

Feed-in tariffs were decreed by law from the year 2008 for wind power equal to
300 €/MWh.’

6 pgc for the German case (in brackets) is an “as if”” price since there is not a market for GC in Germany.

7 Italian producers must decide whether to accept the feed-in tariff for 15 years or to receive the corresponding GC

for the same term (1. 244, Dec. 24, 2007). Note that with respect to 2006 prices, our benchmark was pr; + ?{T";f]] ~
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8.5 RISK ANALYSIS

Even if a proper incentive makes gas and wind plants indifferent with respect to expected
profits, the distributions of the profits differ significantly.

Now we consider a “balanced” production under the incentive that makes power gen-
eration indifferent both to investment costs and expected proﬁts we consider a producer
who owns gas plants for (1 — 1) MW and wind plants for A —%— MW (when considering

capital subsidies) or ASVGV MW (when considering feed-in tanffs and GCs), with A € [0, 1].

Clearly A = 0 is a purely gas production while A = 1 is a purely wind production.
Cg

As mentioned, the weights = Ics C,, ensure that the investment cost is the same for
every A. Besides we consider Ics (or ppy or pge) such that E[Gg] = E[Gw]. Since
GA)=10-1)Geg+ArGw (8.12)

the previous conditions ensure the same investment cost (Cg €/MW) and the same average
profit (E[G(A)] = E[Gg] = E[Gw]) for every A.

To better illustrate how risk changes with respect to A, we make use of the following risk
measure:

R, = VaR,[-G] (8.13)

The minus sign accounts for risk-aversion: smaller R, is preferable.

A plant allocation (1) is assigned a risk R, if it suffered an hourly loss greater than R,
with a probability not greater than 1 — e. Equivalently: it ensured a profit greater than — R,
with a probability greater than ¢.

8.5.1 Capital subsidies
8.5.1.1 Italian case

If the Italian wind plant had been subsrdrzed for Ics/Cw = 77.95 % of its initial cost, the
investment for 1 MW gas plant and C = 2.27MW wind plant would have been the
same. Both plants yielded the same average profit during 2006: 23.04 € /h.

Table 8.3 shows that different risk profiles are associated with the same profit. The gas
plant is off for about 29 % of the time because p < ¢, in which case the associated loss
coincides with O&M costs (see Table 8.1). The wind plant works more than 90 % of the
time (5.3 % of time wind was scanty). The wind plant is riskier than the gas plant. For
h1gh VaR levels (e.g. € =99% and ¢ = 95 %) the wind plant suffered losses equal to
Coics _1 Comw = 11.34€/h, while the gas plant suffered losses equal to Coyc = 3.5€/h
(1ndeed for different reasons, both plants have been off-duty more than 5% of time).

181.81 + % = 258.53 €/MWh. Italian feed-in tariff is a “fixed price” tariff, which differs from the “premium”
tariff we are analyzing here because in the former case the profit is

Ce:
Gw = =< (ywPrrv — Comw)-
Cy

Elywp]

Nevertheless when Py, = pr; + Elyw]

the expected profit is the same.
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Table 8.3 Italian case. Risk (for different percentiles) for gas and wind plants if
renewables were subsidized with Ics/Cw = 77.95%. R in €/h

V% 95% 90% 80% T0% 60 % 50 %

Gas plant (A = 0) 3.5 227 =512 —13.09
Wind plant (A = 1) 11.34 11.10  9.37  6.94 3.47 —-1.33

Figure 8.4 Italian case. Risk (for different percentiles) vs percentage (1) of renewables if renewables
were subsidized with Ics/Cw = 77.95%. R in €/h

Besides, even for low VaR levels (¢ = 50 %) the gas plant yielded a profit greater than
13.09 €/h, while the wind plant yielded a profit greater than only 1.33 €/h.

Figure 8.4 shows that a balanced production can reduce risk. Consider for example R75,.
The gas plant (A = 0) suffers a loss equal to 3.5€/h. The wind plant (A = 1) suffers a loss
equal to 8.27 €/h. However mixing wind with thermal generation would have ensured even
positive profits for the same probability: setting A = 0.25 would have generated profits
greater than 0.72 €/h more than 75 % of time.

Figure 8.4 suggests that in these conditions A >~ 0.3 (i.e. a wind capacity corresponding
to the 30 % of the capital invested) would reduce the frequency of losses.

8.5.1.2 German case

For chflcs = 1.62 MW wind plant yielded the same profit of 1 MW gas plants (5.89 €/h).
They would require also the same investment if wind plant were subsidized for the 69.11 %
of the initial cost (see Table 8.2).

Table 8.4 shows that until 50 % the risk of gas plants does not change. This happened
because ¢ > p for 60 % of time during 2006, so that we observed losses given by O&M

costs. On the other hand, wind generation never dropped to zero because EON plants are

Table 8.4 German case. Risk (for different percentiles) for gas and wind plants when renewables
are subsidized with Ics/Cw = 69.11%. R in €/h

99 % 95 % 90 % 80 % 70 % 60 % 50 %

Gas plant (A = 0) 3.5
Wind plant (A = 1) 7.74 7.23 6.67 5.33 3.68 1.74 —0.75
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scattered all over Germany. In spite of this, wind plants are still riskier when considering
high levels of VaR (e.g. ¢ > 70 %). The reason is that German prices are often low (during
base hours), and particularly much lower than Italian prices. So wind power can suffer
greater losses because of the higher incidence of maintenance costs:

C
Com =3.5€/h <8.09€/h=——9 " Couw (8.14)
Cw — Ics

Figure 8.5 shows that, as in Italian case, a balanced production can reduce risk. How-
ever a greater A is required in this case: A >~ 70% (i.e., 70 % of investment should be
wind).

8.5.2 Feed-in tariffs

Here we analyze a “Premium” tariff. Nevertheless the results of risk analysis do not differ
significantly when considering a “fixed price” tariff. Therefore we can state that the volatility
of spot prices is a very weak source of risk for the wind plant and risk is actually due to
wind variability.

8.5.2.1 Italian case

A mix of 1 MW gas plant and g—“; = 0.5MW wind plant incentivized with a tariff pr; =
181.81 €/MWh is now considered. Any balanced plant gave an average profit equal to
23.04€/h.

With respect to capital subsidies, feed-in tariffs reduce the risk of the wind plant because
of smaller O&M costs (the wind capacity now is 0.5 MW, while it was 2.27 MW with
capital subsidies).

The gas plant is riskier than the wind plant with feed-in tariffs (see Table 8.5). It was not
with capital incentives.

Figure 8.6 shows that “optimal” A are between 40 % and 75 %.

Figure 8.5 German case. Risk (for different percentiles) vs percentage (A) of renewables when
renewables are subsidized with Ics/Cw = 69.11%. R in €/h
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Table 8.5 Italian case. Risk (for different percentiles) for gas and wind plants
when pp; = 181.81€/MWh. R in €/h

OV% 95% 90% 80% 70 % 60 % 50 %

Gas plant (A = 0) 35 227 —5.12 —13.09
Wind plant (A = 1) 25 230 075 —136 —421 —837
R W 2
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Figure 8.6 Italian case. Risk (for different percentiles) vs percentage (1) of renewables when pr; =
181.81€/MWh. R in €/h

8.5.2.2 German case

We have already shown that in German market wind generation needs lower incentives than
in Italian market. The price for the tariff that makes the wind plant as profitable as the gas
plant is only 42.82 € /MWh.

Table 8.6 shows that the wind plant is not as risky as the gas plant. The comparison
between Figure 8.7 and Figure 8.5 confirms that, even though the average profit would have
been still 5.89 €/h, feed-in tariffs reduce the risk of wind generation. Therefore “optimal”
X are now in the range 80 %—90 %.

Table 8.6 German case. Risk (for different percentiles) for gas and wind plants
when pp; = 42.82€/MWh. R in €/h

V% 95% 90% 80% 70 % 60 % 50 %

Gas plant (A = 0) 3.5
Wind plant (A =1) 2.24 193 153 0.63 —-044 —-1.73 =330

8.5.3 Green certificates
8.5.3.1 Italian case

Here we consider the Italian case with GCs priced pgc = 150.06 € /MWh.

Such a price would give both plants (1 MW gas plant and g—“; = 0.5MW wind plant)
an average profit equal to 19.90€/h: compared to capital subsidies and feed-in tariffs,
GCs reduce the profitability of traditional generators. Even if the “spark-spread” protection
offered by sales on the spot market partially offsets GC cost (k pgc), it increases the
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Figure 8.7 German case. Risk (for different percentiles) vs percentage (A) of renewables when
prr = 42.82€/MWh. R in €/h

Figure 8.8 Italian case. Risk (for different percentiles) vs percentage () of renewables when pgc =
150.06 €/MWh. R in €/h

probability of the gas plant to be off-duty, which is an event that occurred about 34 % of
the time in 2006. So, with respect to feed-in tariffs, GCs reduce the profit and increase the
risk of the traditional plant (see Figure 8.8 and Figure 8.6).

Gas plants are riskier than wind plants in this case because the “equivalent” wind O&M
costs are smaller:

C
Comg =3.5€/h>25€/h= C—GCOMW (8.15)
w

With GC the wind plant yields positive profits 75 % of the times, while the gas plant does
it only 65 % of times (see Table 8.7). Nevertheless a balanced production can still perform
better. This time the “optimal” allocation is not unique: A 2~ 0.45 ensured a profit greater

Table 8.7 Italian case. Risk (for different percentiles) for gas and wind plants
when pgc = 150.06 €/MWh. R in €/h

V% 95% 90% 80% 70 % 60 % 50 %

Gas plant (A = 0) 3.5 —0.54 —-8.52
Wind plant (A = 1) 2.5 232 097 -0.88 337 —6.96
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Figure 8.9 German case. Risk (for different percentiles) vs percentage (A) of renewables if GC were
introduced (with an obligation k = 0.0305) and pgc = 38.06 €/MWh. R in €/h

than 14.07 €/h for 50 % of time (which is clearly a better performance than both 8.52€/h
and 6.96 €/h ensured by the gas and the wind plant respectively). However with A >~ 80 %
the maximum probability to avoid losses is ensured (positive profits for 85 % of times).

8.5.4 German case

For completeness and comparison purposes, we apply the model to German GC case, which
we assume similar to Italy. We assume that Germany introduced a compulsory renewable
production of k = 3.05% of the whole generation. Still comparing 1 MW gas plant to
Cg

o2 = 0.5MW wind plant, we have already estimated the price for the GC that brings gas
w

production equivalent to wind: 38.06 €/MWh, which is much lower than Italian pgc. Such
a GC would reduce the average profit to 5.44 €/h.

Table 8.8 German case. Risk (for different percentiles) for gas and wind plants
if GC were introduced and pgc = 38.06€/MWh. R in €/h

V% 95% 90% 80% 70 % 60 % 50 %

Gas plant (A = 0) 3.5
Wind plant (A =1) 225 196 158 0.74 -027 —-149 -297

Even though pgc is not high enough to change significantly the risk of gas plants (instead
of 60 %, the gas plants would have been off 61.5 % of time), with GC the wind plant is
not as risky as the gas plant, while it was with capital subsidies. “Optimal” A is now about
85 % which ensures positive profits in 75 % of the time. Figure 8.9 and Figure 8.7 show that
feed-in tariffs and GC cases are very similar for what risk is concerned, but, as mentioned,
GCs reduced the profits of about 0.45€/h.

8.6 CONCLUSIONS

This chapter offers several insights on the recent problem introduced by the introduction of
incentives and other ways to subsidize renewable electricity sources (RES). While arguments
can be given in favor or not for capital subsidies, feed-in tariffs rather than green certificates,
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there is no doubt that subsidies can encourage investments in renewables. While this is
a rather obvious result, nevertheless we showed here that some form of subsidies are a
necessary condition to make renewable plants economically viable, given current market
prices. We stated the conditions on the three incentive forms to make wind and gas plants
equivalent with respect to their hourly expected profit.

We also analyzed some risk management issues. Based on Italian and German data (prices
and generation) of wind and gas plants, we estimate different VaR levels at different gen-
eration capacity mix.

We observe that capital subsidies, feed-in tariffs and GC are non equivalent in term of
generation portfolio management. It turns out that under capital subsidies wind plants show
higher values of VaR, i.e. are riskier than conventional plants. The opposite happens for
feed-in tariffs and GC: wind plants result clearly less risky than conventional ones with
GC showing a slightly stronger improvement of VaR measure. In all cases however the
“optimal” VaR levels are achieved through a generation mix. Such results are therefore in
favor of a progressive introduction of RES in the generation portfolio rather than a radical
lump conversion. Further we find that the larger the uncertainty about fuel costs is, the
more economically attractive investing in green energy is, with negligible marginal costs.
Our results can help establish benchmark prices for subsidies and Green Certificates and
address policy guidelines for a more effective institutional intervention.

An interesting aspect to be addressed for future research is that of the unique EU market
for GC. Given the results of our chapter, a unique price for GC would be a huge opportunity
for some countries but also a dangerous obstacle for others. In particular a GC price lower
than what is required to make renewable production economically attractive, can result in
RES stopping in those countries where traditional fuel has a comparative advantage. This
in turn implies the risk of transferring all the burden of conversion to renewable energy
resources on the shoulders of those countries already suffering for higher traditional fuel
generation costs.
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Hedging the Risk of an Energy

Futures Portfolio®

Carol Alexander

This chapter considers a hedging problem for a trader in futures on crude oil, heating oil
and unleaded gasoline and on the crack spreads based on these energy commodities. We
first explain how the trader can map his current position to use constant maturity futures as
risk factors. This has many advantages over using spot price or prompt futures prices plus
discount rates as risk factors. Then we show how the trader can quantify his key risk factors,
assess the risk of his portfolio and determine the most cost-effective hedging strategies.

The outline of this chapter is as follows. Section 9.1 explains the risk factor mapping
process, and the advantages of using constant maturity futures as risk factors; Section 9.2
describes the portfolio to be hedged and Section 9.3 explains how principal component
analysis is applied to reduce the dimension of the risk factor space and to isolate the key
sources of risk; Section 9.4 assesses the risk of the portfolio and describes how best to
hedge this risk; and Section 9.5 concludes.

9.1 MAPPING PORTFOLIOS TO CONSTANT
MATURITY FUTURES

Constant maturity futures are not traded instruments. However, a time series of constant
maturity commodity futures can be obtained by concatenation of adjacent futures prices.
For instance, a time series for a constant maturity 1-month futures price can be obtained by
taking the prompt futures with expiry less than or equal to 1 month and the next futures
with expiry greater than 1 month and linearly interpolating between the two prices. So if the
prompt futures contract with price P has maturity 7; < 1 month and the futures contract
with price P is the next to expire with maturity 7, > 1 month, and 7'; and T, are measured
in years, then the 1-month futures price is

(=) P+ (- T) P

P =
(T —T)
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For instance, suppose we wish to construct a 3-month futures series when the maturity
dates are 16 March, 16 June, 16 September and 16 December. On 1 September we use the
September and the December contracts, with prices P; and P, respectively. The number
of days between the September contract expiry date and our 3-month expiry date (which is
1 December on 1 September) is 76 and the time interval between the December contract
expiry date and our expiry date is 15 days. Hence, the concatenated price is

15x PL+76 x P,
91

We can continue to use the September and December contract prices in the construction of
the 1-month futures price. For instance, on 12 September, our 3-month expiry date is 12
December, so the concatenated price would be

4XP1+87XP2
91 '

where P and P, are now the prices of the September and December futures contracts on
12 September.

Since prices can behave oddly a few days before expiry, we should drop the September
contract from our calculations after 12 September, and instead take the 3-month maturity
contract price to be equal to the December contract price for a few days. However, on 17
September we can start using linear interpolation between the December and March futures
prices as above, but now with the December contract being the shorter one. As time moves
on we decrease the weight of the December price in our calculation of the concatenated
futures price and increase the weight on the March futures price.

The main advantage of using constant maturity futures as risk factors for commodity
portfolios is that the use of spot prices plus discount rates as risk factors assumes futures
are always at their fair price, and thus ignores the basis risk due to fluctuations in carry
costs and convenience yields, as well as the variation of the market price of the futures
within its no arbitrage range. All these sources of uncertainty in the basis are considerable:
carry costs due to storage, insurance and transportation are difficult to measure precisely;
convenience yields are intangible and even more difficult to assess; and since the spot cannot
be shorted the no arbitrage range has no lower bound, whence substantial decoupling of
spot and futures prices is often evident when demand surges or supply drops for reasons
beyond the control of the market participants.

Constant maturity futures provide a long time series of futures prices that can be used
to assess the market characteristics. These characteristics vary considerably from market
to market. Prices are determined by unpredictable demand and supply factors such as the
weather and the economic climate. For instance, the weather affects the supply of corn and
the demand for gas and the outbreak of war affects the price of oil. But prices may also
be affected by speculative trading, and the “herding” behaviour of speculative investors can
lead to prolonged price trends in futures prices that have nothing to do with demand and
supply of the actual commodity.

The process of mapping a portfolio to constant maturity futures is very similar to the
process of mapping a cash flow to fixed maturity interest rates. This can be done in a
present value and volatility invariant manner as the examples below will demonstrate. The
methodology is a simple adaptation of the cash flow mapping methods that are described
for interest rate sensitive portfolios in Alexander (2008c) on pp. 332-337.
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Example1 Mapping commodity forward positions to constant maturity futures

Suppose we have just two forward positions on crude oil: a long position with present value $2
million in 1 month and 10 days and a short position with present value —$1 million in 1 month
and 20 days. How should we map these to equivalent positions on constant maturity crude oil
futures at the 1-month and 2-month maturity?

Solution

Suppose there are 30 days in a month. We could simply use linear interpolation and map 2/3
x 2 — 1/3 x 1 = $1m to the 1-month vertex and 1/3 x 2 — 2/3 x 1 = 0 to the 2-month
vertex. But this will change the volatility of the portfolio. Instead we can use a present value
and volatility invariant map, depicted in Fig 9.1. For this we need to know the volatilities of
the 1-month and 2-month futures and their correlation — suppose the volatilities are 30 % and
27 % as shown and the correlation is 0.95. Using linear interpolation on the variances we infer
the volatilities of 29.03 % for the 1 month 10 day position and 28.04 % for the 1 month 20 day
position.

. 1 30%

-~ T 127%
Position .

PV ! Volatility
($m) $2m ,
10 days
10 days ($1m) 10days
1 mth 2 mths

Figure 9.1 A volatility invariant commodity futures or forwards mapping

For the mapped position to have the same volatility as the original position, the proportion
x of the long position of $2 million at 1 month 10 days that is mapped to the 1-month future
must satisfy

29.032 =307 x x2+ 27 x (1 = x)> 42 x 0.95 x 30 x 27 x x x (1 — x).

This quadratic equation has one solution between 0 and 1, i.e. x = 0.762092. Similarly, the
proportion y of the short position of $1 million at 1 month 20 days that is mapped to the
I-month future must satisfy

28.04> =30 x Y 4+ 27> x (1 — y)* +2x0.95x 30 x 27 x y x (1 — y),
and solving this gives y = 0.464239. Thus in total we must map

0.762092 x $2000000 — 0.464239 x $1 000000 = $1 059945
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to the 1-month future, and
0.237908 x $2 000000 — 0.535761 x $1 000000 = —$59 945

to the 2-month future. This way the present value and the volatility of the mapped
position is the same as the volatility of the unmapped position.

Example2 Determining the number of contracts

Suppose the mapping in Example 1 was performed on a day when the prices of the crude oil
forwards and futures were as shown in Table 9.1. Each forward contract is for 100 barrels and
each futures contract is for 1000 barrels of crude oil. How many contracts are in the mapped
position?

Table 9.1 Prices of crude oil forwards and futures

($ per barrel)

30 days 40 days 50 days 60 days

98.35 99.01 100 100.57

Solution

The solution is summarized in Table 9.2. The second row of the table shows the unmapped
and mapped value of the positions, the number of barrels is this position value divided by the
price per barrel and the number of contracts is the number of barrels divided by the number of
barrels in each contract (1000 for the futures and 100 for the forwards).

Table 9.2 Positions on crude oil forwards and futures

Maturity 30 days 40 days 50 days 60 days
Price 98.35 99.01 100 100.57
Position Value 1059945 2000000 —1000000 —59,945
Number of Barrels 10777.28 20200 —10000 —596.05
Number of Contracts 10.777 202 —100 —0.5961

Of course, there is no need to round the resulting number of futures contracts to the nearest
integer, since we are only mapping the portfolio to these non-traded risk factors.

9.2 THE PORTFOLIO AND ITS KEY RISK FACTORS

Suppose that on 1 August 2006 a trader in energy futures holds long and short positions
that have been mapped to constant maturity futures as shown in Table 9.3. Each futures
contract is for 1000 barrels and the minus sign indicates a short position. Note that these
positions could result from both straight futures trades and from positions on the two crack
spread futures, i.e. unleaded gasoline—crude oil and heating oil—crude oil.

Figures 9.2-9.4 show how the daily prices of the constant maturity futures on all three
products have evolved over a very long period. All prices spiked before the outbreak of
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Table 9.3 Number of futures contracts in an energy futures trading book
Maturity (months) Crude oil Heating oil Unleaded gasoline
1 —100 70 20
2 180 —60 —60
3 —300 150 100
4 —400 200 250
5 250 —180 —100
6 —100 100 30
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Figure 9.2 NYMEX WTI crude oil constant maturity futures prices

the Gulf war in 1991, and since the war in Iraq in 2003 prices have risen tremendously.
For instance, the crude oil futures prices rose from around $20 per barrel to nearly $80 per
barrel in August 2006 and the prices of the futures on the refined products rose even more.
The daily price fluctuations of futures of different maturities on each product are always
very highly correlated, as are those on futures of different products.

We do not need to use 30 years of data for the portfolio risk analysis; in fact looking
back into the 1990s and beyond may give misleading results since energy markets have
become much more volatile during the last few years. But we do need fairly high frequency
data, because the trader needs to understand his short term risks. So we shall use daily data
between 2 January 1999 and August 2006. In the spreadsheet for this case study we first
calculate the average correlation of daily returns on each of the futures over the sample

period. The correlation matrix is too large to be reported in the text, but Table 9.4 shows
some of these correlations.
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Figure 9.3 NYMEX heating oil constant maturity futures prices
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Figure 9.4 NYMEX unleaded gasoline constant maturity futures prices
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Table 9.4 Daily correlations of futures prices at selected maturities

Correlations ml-m2 m2-m3 m3-m4 m4-m5 mS5—-m6
Crude oil (CO) 0.972 0.994 0.997 0.998 0.998
Heating oil (HO) 0.946 0.986 0.986 0.991 0.991
Unleaded gasoline (UL) 0.918 0.951 0.951 0.947 0.949
Cross-correlations ml m2 m3 m4 mb6
HO-CO 0.776 0.878 0.888 0.895 0.894
UL-CO 0.728 0.839 0.857 0.849 0.852
HO-UL 0.695 0.804 0.815 0.812 0.811

The crude oil futures behave like a typical term structure, with the correlation being
higher at the long end and decreasing as the maturity gap between the futures increases. All
correlations are very high indeed. The same comments apply to heating oil and unleaded
gasoline futures, and although their term structures are a little less highly correlated than
crude oil there is still a very high degree of correlation. The lower part of Table 9.4
shows that the cross-correlations between futures on different products are lower than the
correlations of futures on one of the products, but they are still very high. Note that the
I-month futures tend to have slightly lower correlations than futures of 2 months’ maturity
and longer.

9.3 IDENTIFYING THE KEY RISK FACTORS

We have a total of 18 risk factors. But since they are so highly correlated we should perform
a principal component analysis (PCA) to reduce the dimension of the risk factor space.!
In the spreadsheet we apply PCA to the entire system of 18 risk factors. This way the
principal component risk factors capture correlated movements across futures on different
commodities, as well as within futures on the same commodity. The PCA may be applied
to either the correlation or the covariance matrix of returns, with the latter accounting for
any difference between the risk factor volatilities. In each commodity the 1-month futures
have noticeably higher volatilities than the other futures, so we shall perform the PCA on
the covariance matrix.

The results for the first four components from the PCA on the covariance matrix are
displayed in Table 9.5. The entries in Table 9.5 are the eigenvectors corresponding to the
first, second, third and fourth largest eigenvalues. The percentage of the total variation
that is explained by each eigenvalue is shown in the first row of the table. Examin-
ing the eigenvalues and eigenvectors we deduce that, between January 1999 and August
2006:

e 86 % of the historical variations were a similar and simultaneous shift and tilt in all three
term structures;

e 5% of the historical variations were when the crude oil and unleaded gasoline futures
shift and tilt in opposite directions and the heating oil futures term structure tilts changes
convexity;

!'See Alexander (2008) Section 1.2.6 and Chapter II.2 for further details of principal component analysis.
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Table 9.5 Results of PCA on the futures returns covariance matrix

86% 5% 3% 2%
WTI m1 0.2594 0.1326 0.3522 0.0562
WTI m2 0.2448 0.1183 0.3055 0.0387
WTI m3 0.2284 0.1159 0.2908 0.0303
WTI m4 0.2157 0.1133 0.2802 0.0255
WTI m5 0.2053 0.1112 0.2697 0.0225
WTI m6 0.1965 0.1086 0.2587 0.0183
HO ml1 0.2750 0.2245 —0.5156 —0.2024
HO m2 0.2629 0.2342 —0.3045 —0.0457
HO m3 0.2449 0.2242 —0.2283 0.0654
HO m4 0.2316 0.1979 —0.1618 0.1777
HO m5 0.2210 0.1611 —0.1158 0.2479
HO m6 0.2126 0.1120 —-0.0772 0.2676
UL ml 0.2835 —0.6028 —0.1512 0.5121
UL m2 0.2630 —0.3950 —0.0172 0.0412
UL m3 0.2390 —0.2952 0.0183 —-0.2175
UL m4 0.2210 —0.2249 0.0066 —0.3559
UL m5 0.2094 —0.1452 0.0018 —0.4224
UL m6 0.2039 —0.0810 —0.0041 —0.4057

e 3% of the historical variations were when the crude oil and heating oil futures term
structures shift and tilt in opposite directions and the unleaded gasoline futures remain
static except at the very short end;

e 2 % of the historical variations were when the crude oil futures remain almost static, and
the heating oil futures and unleaded gasoline futures tilt in opposite directions.

The first four principal components are time series that represent the four key risk factors
for any portfolio on these oil futures. The common trend principal component risk factor
is much the most important, since 86 % of the historical variation in these futures was due
to movements of this type. Taking the first four components together captures 96 % of the
historical variations in these energy futures since January 1999.

9.4 HEDGING THE PORTFOLIO RISK

Figure 9.5 shows a reconstructed price series for the portfolio, holding the positions constant
at the values shown in Table 9.3 and revaluing the portfolio using the historical prices of
the constant maturity futures. Since the portfolio has short positions its value could become
negative, hence we base our analysis on the portfolio P&L and not on portfolio returns.

The current value of the portfolio is $10.025 million and its historical P&L volatility
based on the reconstructed price series is extremely high, at over $3.5 million per annum.
The 1% 1-day historical Values at Risk (VaR) is $656509 (measured as minus the 1 %
percentile of the daily P&L distribution).> Assuming the returns are independent and identi-
cally distributed, we apply the square root of time rule to estimate the 1 % 10-day historical
VaR as $656 509 x +/10 = $2 076 065.

2 See Alexander (2008d) Chapter IV.3 for further details on historical VaR. Note that we have not used filtered
historical simulation here, hence the square root of time rule was applied to scale the 1-day VaR.
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Figure 9.5 Reconstructed price series for the portfolio ($ million)

Concerned about the high probability of large losses on the portfolio, the trader decides
to reduce the volatility of the portfolio returns by hedging. Our question is, which futures
should he trade, and how many contracts should he buy or sell?

The principal component representation allows a close approximation of the portfolio in
terms of its sensitivities to the four major risk factors. We first express the return on each
constant maturity futures using its principal component representation. For instance,

RV~ 0.2594P; + 0.1326P; + 0.3522P; + 0.0562Py,

where RXI‘IITI is the daily return on the 1-month crude oil futures and Py, P, P3 and P4
are the first four principal components. Then we map the portfolio return to the principal
component risk factors using the portfolio representation shown in Table 9.5. We obtain:

P&L = 2.7914P) — 4.2858 P, — 17.0186P3; — 5.56101 P4

where the coefficients are measured in millions of US dollars.

This representation tells that if the first principal component shifts up by 1% leaving
the other components fixed then the portfolio will gain about 1% of $2.791 million, i.e.
about $27910. The first component is where all futures of the same maturities move by
approximately the same amount.’> The largest sensitivity of the portfolio is to the third
principal component. Thus a rise in price on the short term heating oil contract is the largest
risk exposure of this portfolio. It is not easy to see this from the portfolio composition.
Nevertheless, we shall now confirm this by showing that selling the 1-month heating oil

3 From Table 9.5 we know that a 1 % upward shift in the first component implies that the 1-month crude oil futures

price increases by 0.2594 %, the 1-month heating oil futures price increases by 0.275 %, the 1-month gasoline
futures price increases by 0.2835 %; and so on for the 2-month futures.
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contract is indeed the best hedge for the portfolio amongst all single contract futures hedges,
according to the reduction in P&L volatility that it achieves.

We now consider a partial hedge using a single futures contract and targeting a reduction
on P&L volatility from over $3.5 million to less than $2.5 million per annum. For each of
the futures contracts in turn, we calculate how many futures contracts of this type we need
to sell to minimize the variance of the hedge portfolio P&L.

The results are summarized in Table 9.6. For each commodity we first report the risk
factor P&L volatility, and the correlation between this risk factor P&L and the portfolio
P&L. Below this we show the number of contracts on the futures that should be sold
to minimize the variance of the hedged portfolio’s P&L. The futures having the highest
correlation with the reconstructed portfolio P&L are the 1-month heating oil futures (P&L
correlation = 0.746) and the corresponding minimum variance hedge ratio implies that
145.45 contracts on the 1-month heating oil futures should be sold, and this trade effects
the largest possible reduction in volatility compared with any other trade on a single futures
contract.

Table 9.6 Minimum variance hedges to reduce to volatility of the futures portfolio

Risk factor WTI m1 WTI m2 WTI m3 WTI m4 WTI m5 WTI mé6

Risk factor P&L 13.23 12.26 11.52 10.97 10.55 10.20
Volatility ($)

Correlation 0.411 0.441 0.440 0.440 0.440 0.441

No. contracts 111.44 128.88 137.10 143.72 149.56 155.17

Hedged portfolio $3269 509 $3219570 $3219902 $3221 064 $3221055 $3218 688

P&L volatility ($)
1% 10-day historical $1939370 $1948219 $1976 805 $1976222 $1974 615 $1975 345

VaR ($)
Risk factor HO ml HO m2 HO m3 HO m4 HO m5 HO mé6
Risk factor P&L 18.39 16.79 15.70 14.86 14.22 13.67
volatility ($)
Correlation 0.746 0.739 0.722 0.699 0.682 0.673
No. contracts 145.45 157.80 164.84 168.64 172.02 176.52
Hedged portfolio $2 389086 $2416350 $2483014 $2565397 $2622976 $2 653691

P&L volatility ($)
1% 10-day historical $1472834 $1 509 869 $1588319 $1725051 $1791 145 $1852938

VaR ($)
Risk factor UL ml UL m2 UL m3 UL m4 UL m5 UL mé6
Risk factor P&L 22.20 18.21 15.98 14.81 14.09 13.71
volatility ($)
Correlation 0.661 0.679 0.703 0.740 0.682 0.682
No. contracts 106.82 133.81 157.67 179.24 173.56 178.55
Hedged portfolio $2 690 058 $2 631691 $2552091 $2411291 $2 622 860 $2621616

P&L volatility ($)
1% 10-day historical $1501297 $1479477 $1458 825 $1366 632 $1642 830 $1599 100
VaR ($)

The hedge is effected using exchange traded heating oil futures that are equivalent, under
the mapping described in Section 9.1, to 145.45 contracts on the 1-month heating oil futures.
The result will be a portfolio with a historical P&L volatility of $2.389 million, compared
with over $3.5 million without this hedge. Similarly, the hedge reduces the 1% 10-day
historical VaR from $2.076 million to $1.473 million.

Other single contract hedges can also reduce the risk considerably. For instance, taking a
position equivalent to selling 179.24 of the 4-month futures contract on unleaded gasoline
would reduce the P&L volatility to $2.411 million and the 1% 10-day VaR to $1.367
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million. Clearly, hedging with more than one futures contract would effect an even greater
reduction in portfolio risk. For instance, using both the 1-month heating oil and 4-month
gasoline futures in a single hedge, we determine the minimum variance hedge ratios using
multiple regression.* The ordinary least squares estimated model, with t-statistics below the
coefficients in parentheses is:

P&L = —2.603 (_o.809) + 83.840 (18‘923)P&Lg(1) +97.928(17.302) P&ng

Taking positions equivalent to 83.84 contracts on the 1-month heating oil futures and 97.928
contracts on the 4-month unleaded gasoline futures reduces the portfolio P&L volatility to
2.217 million and the 1% 10-day VaR to $1.274 million.

9.5 CONCLUSIONS

This chapter has used a practical and realistic example to demonstrate how to identify the
key risk factors of energy futures portfolios. These are the principal components of a set
of constant maturity futures on related energy products — in this case, crude oil, heating oil
and unleaded gasoline. Due to the very high correlation of these futures, PCA is a statistical
tool that serves to reduce the dimensions of the risk factor space considerably. In our case
we reduced dimensions from 18 constant maturity futures to just four principal components.
Moreover, using PCA we can identify the key risk factors of the portfolio. For instance,
we showed that the most common types of movement in energy futures term structures
is a similar and simultaneous shift and tilt in crude oil, heating oil and unleaded gasoline
futures.

Then we considered a particular portfolio, and used PCA to demonstrate that the greatest
risk exposure was to short term heating oil futures, a fact that is not evident from a direct
examination of the portfolio composition. We demonstrated empirically that hedging with
a position that is equivalent to 145.45 contracts on the 1-month heating oil futures reduces
the portfolio P&L volatility from over $3.5 million to $2.389 million, and reduces the 1%
10-day historical VaR from $2.076 million to $1.473 million. Composite hedging with more
than one futures contract reduces the P&L volatility and VaR even further.
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Spark Spread Options when

Commodity Prices are Represented

as Time Changed Processes

Elisa Luciano

Spark spread options are defined on the difference between the price of electricity and the
price of the fuel used to generate it, usually natural gas. Being output-minus-input spread
options, they approximate the cost of converting gas into electricity. They are not only used
as hedging tools, but also play a key role in power plant valuation: they represent by far the
most important correlation product in the energy context. Their pricing relies on the ability
to model not only the single underlying processes, but also their dependence, and therefore
their joint dynamics.

At the marginal level, it is well known that commodities, energy in particular, have
trajectorial and statistical properties much more complex — or with greater deviations from
normal returns — than some other assets. Return models able to describe skewness, kurtosis,
and other deviations from normality have been proposed during the last decade, not only for
commodities, but also — or, a fortiori — for energy. Lévy models, which include diffusive
Brownian motion on the one hand, pure jump processes on the other, by now seem to
be the general environment in which commodity processes for the 21st century can be
studied. However, not all Lévy models seem to be able to capture the observed features of
market prices and returns. The interest of the research community has been attracted by non
diffusive, pure jump Lévy models for at least two reasons: they can easily accommodate for
observed deviations of asset returns from normality; they can be represented, studied and in
some cases simulated as time-changed Brownian motions. Time change in turn represents
information and trade, and as such is economically well grounded.

At the joint level, the literature on time changed or pure jump Lévy processes is scarce, if
one wants different time changes — or different trade patterns — to apply to different assets.
Even scarcer is their application to correlation products in the commodity domain. In order
to price spark spread options, Benth and Benth (2006) have modelled directly the spread as
a single Lévy process, while Benth and Kettler (2006) have coupled two marginal processes
through a static copula. To our knowledge however, there exists no application to correlation
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products such as spark spread options of a well defined multivariate Lévy process, consistent
with the dynamics of both its margins.

In this chapter we will briefly review some features of time changing, and then concentrate
on the challenges it poses for energy pricing. We study the feasibility and advantages of
time changed processes in the commodity domain, when it comes to modeling several
commodities without superimposing a copula structure and allow for different time changes
or trade behaviors. In order to do so, we will provide a full marginal calibration to PJM and
NYMEX Natural Gas data, and discuss the spark spread option pricing issue in a calibrated
model, able to incorporate different dependence levels.

The paper is structured as follows. Section 10.1 introduces the spark spread option.
Section 10.2 recalls the basic properties of time changed Lévy processes. Section 10.3
reviews their application to energy. Section 10.4 calibrates a number of time-change specifi-
cations to natural gas and electricity prices and proceeds to spark spread pricing. Section 10.5
concludes and outlines further research.

10.1 SPARK SPREAD OPTIONS

A spark spread option is a European call written on the difference between the price of
electricity and that of fuel — often natural gas — needed to produce it. The final payoff of
the spark spread option with maturity 7 can be written as

max (Se(T) — HerySo(T) — K, 0)

where S (T) and S (T) are the values at time T of two future contracts with maturity ¢
> T, respectively on electricity and gas, K is the strike, while H . is the heat rate, or
efficiency factor, of a power plant, which summarizes the conversion capability of the plant
from input (gas) to output (electricity). As a consequence, spark spread options are typically
in $/MWh, with gas price in $/MBtu, and the heat rate in Btu/KWh.

Spark spread options are of paramount importance for two reasons. First, they are powerful
risk mitigation vehicles in energy markets, for hedging exposure to gas and electricity price
fluctuations, especially by power plant operators. Their use as a hedging tool has been
fostered since the liberalization of the electricity industry (see for instance Hsu (1998)),
while liquidity has been provided by gas and electricity producers, traders and other market
participants. Second, spark spread options are of particular importance as real options, in
order to evaluate the convenience of new plants for electricity production. Their payoff
is — in a nutshell — the one of a plant able to transform gas into electricity. As such, spark
spread options are also named paper plants. A detailed example of such a use is in Geman
(2005a), where the valuation of new plants as spread options is compared with a more
traditional net present value (NPV) one. Essentially, as in every cost-benefit analysis through
NPV as opposed to the real option one, the advantage of the second methodology consists
in a proper appraisal of the volatility of the underlying input and output prices.

The importance of spark — as well as other — spread options is in contrast with the lack
of a closed form pricing formula for them, even in the simplest Black—Scholes case, in
which both underlyings are geometric Brownian motions. In the Black—Scholes framework,
an analytical pricing formula exists for the case K = 0: with a null strike, spark spread
options become options to exchange gas for electricity, and can be evaluated using the
Margrabe formula. When K # 0, closed pricing formulas cease to exist and Monte Carlo
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approaches or analytical approximations are usually adopted. The former approach, which
is adopted for instance in Geman (2005a), consists of sampling from the final distribution of
gas and electricity, taking into consideration the possible correlation between the diffusive
components of their dynamics. The second approach can consist of using the good fit that
normal random variates provide for the difference between two lognormal random variables
(gas and electricity prices at T in the Black—Scholes world). This approach is named after
Bachelier and its properties are surveyed in Carmona and Durrleman (2003). Alternatively,
one can exploit a family of upper and lower bounds, provided by Carmona and Durrle-
man (2003), which allows easy computation of the Greeks. Last but not least, Kirk’s (1995)
approximating formula is available. Similarly to the supremum of Carmona and Durrleman’s
lower bounds, it provides excellent hedges and outperforms Bachelier’s approach.

The extension of the spread option pricing problem to geometric Brownian motions with
jumps is quite straightforward: once more, we refer the reader to the excellent survey of
Carmona and Durrleman. A more delicate issue is mixed jump-diffusion pricing outside the
geometric Brownian motion case: Fusai and Roncoroni (2005, chapter 19) provide a fully
calibrated spark pricing methodology when gas presents mean reversion and electricity is
represented as in Geman and Roncoroni (2006).

The treatment of the case in which both underlying assets are pure jump processes instead
is far from easy. To this end, one can adopt the methodology of Dempster and Hong (2000),
who extend the Fast Fourier Transform (FFT) methodology of Carr and Madan (1999): their
method can be applied any time the joint characteristic function of the underlying prices is
known in closed form. It is based on breaking the region where the option is in the money
into a series of rectangles, and was originally designed to efficiently deal with stochas-
tic volatility and correlation. Very recently, Jackson et al. (2007) provided an alternative
methodology, which extends to the bivariate case their Fourier Space time-stepping (FST)
for option pricing with Lévy models. The basic idea consists of treating symmetrically the
diffusive and integral terms in the partial integro-differential equation (PIDE) which formal-
izes the pricing problem in the Lévy case. The Fourier transform is applied to the PIDE,
so as to obtain a linear system of ordinary differential equations. By so doing, they reap
the computational efficiency of FFT and are able to deal with path dependent options. As
in the Dempster and Hong case, the application of their pricing approach to spark spread
options relies on the knowledge of the joint characteristic function. For pure jump processes
of the type we intend to use in this chapter, namely the ones in which each margin results
from a different trade behavior and time change, such a knowledge is far from elementary.
Indeed, the joint characteristic function readily follows from the univariate one, as soon
as the bivariate process is assumed to be generated by a unique time change of different,
independent Brownian motions. This is the case, for instance, for the multivariate Vari-
ance Gamma (VG) of Madan and Seneta (1990). A unique time change however, as we
will argue in Section 10.3 below, does not provide enough flexibility in dependence and
marginal description of Lévy processes. For this reason, the spark spread literature existing
so far, at least to our knowledge, does not rely either on Dempster and Hong or on Jackson
et al., which is in addition a very recent contribution.

In order to extend the valuation of spark spread options to non diffusive cases, Benth
and Benth (2006) directly modelled the difference between the two underlying prices with
a jump-diffusion process. This approach simplifies the bivariate pricing problem into a
univariate one, but does not ensure consistency with the dynamics of each single
underlying. To ensure consistency, Benth and Kettler (2006) assumed instead a non Gaussian
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Ornstein-Uhlenbeck couple of processes for gas and electricity, and fitted an externally spec-
ified, approximating copula to their (detrended and de-seasonalized) time series. They then
computed the spark spread price by Monte Carlo simulation of the final payoff. However,
such an approach has two main drawbacks. First, the whole calibration is performed on time
series data, and therefore an assumption of invariance of the marginal price processes and
their dependence when switching from the historical to the risk neutral measure is needed:
in other words, no risk premium for skewness, kurtosis, or dependence must exist. Second,
their copula approach does not ensure dynamic consistency, since the copula, as defined by
Sklar’s theorem, should be derived by inverting the bivariate process at each single point
in time. In the pure jump Lévy case as opposed to the BS framework, it is well known
(see Kallsen and Tankov (2006)) that one cannot define the marginal processes, assume a
(time independent) copula for them and preserve the Lévy property for the bivariate process.
Benth and Kettler use a time independent copula, which therefore must be understood as
an approximation to the actual one.

Our approach to the spark spread option pricing problem is as follows: we rely on a
well defined time changed bivariate process, outlined in Section 10.3 and detailed — for
the VG case — in Appendix A, for which the time change is not unique over different
commodities and the bivariate characteristic function is still known in closed form. Then
we price the spread option by FST. The FST approach can be adopted without superimposing
an approximating copula: the characteristic function of the multivariate time changed process
already encapsulates dependence and guarantees dynamic consistency.

As an application of such a modelling approach, we consider its calibration to PJM and
NYMEX Natural Gas. First we calibrate the two marginal processes and provide a best fit
analysis of competing time changed descriptions. After the marginal calibration, we will be
able to appreciate the accuracy of the multivariate time change in capturing the statistical
properties of the underlying data.! Then we proceed to spark spread option pricing. In order
to provide an economic foundation to our use of marginal time changed processes and to
provide the analytical set up for its multivariate extension with more than one time change,
in the next two sections we will review the motivations for time changed processes and their
univariate — as well as multivariate but single-subordinator — applications to energy markets.
Last but not least, we will provide foundations for a multivariate time-change extension.

10.2 TIME CHANGE IN A NUTSHELL

Time change basically consists in recognizing that asset prices must be described differently
whether they are in the calendar-time scale or in the business or trading-time one. As Clark
(1973) says, “the different evolution of price series on different days is due to the fact that
information is available to traders at a varying rate. On days when no new information
is available, trading is slow, and the price process evolves slowly. On days when new
information violates old expectations, trading is brisk, and the price process evolves much
faster.” Business time, then, is supposed to run according to market activity, and to depend
on the dynamics of demand and supply order arrival. It is inherently stochastic, since it
is driven by information flow and by the unpredictable matching of supply and demand
orders: features such as number and magnitude of orders are its determinants. The idea of a

I'We will not consider trajectorial properties since we calibrate on a single day cross section of univariate option
prices (under the risk-neutral measure) and do not work on time series or historical prices.
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stochastic, order or market activity driven business time dates back to Clark (1973). In the
last decade, it has been extensively advocated as a way to explain volatility, both from the
econometric and theoretical point of view.

As a consequence of the discrepancy between calendar and business time, a natural
question arises. Even if in business time we are willing to accept the traditional view that
asset prices are diffusions, what do they look like in calendar time, which is used for
modelling purposes? And what do they become if we want them to be diffusions as simple
as Brownian motions in business time?

As Geman (2005b) vividly reports, the theoretical answer was very promising right from
the early developments of the time change technique: Monroe’s (1978) theorem indeed guar-
antees that any semimartingale is a time changed Brownian motion. And semimartingales
correspond to the absence of arbitrage in financial markets, since they generate martingales.
Given the relationship between semimartingales, martingales, and no arbitrage, the class of
time changed Brownian motions was immediately perceived by the financial community
as being large enough for any practical modelling purpose. At the same time, influential
microstructure papers such as Easley and O’Hara (1992) provided a link between the exis-
tence of information, the timing of trades and the stochastic process of prices, which was
consistent with time change.

The answer proved to be empirically sound too: Geman and Ané (1996) and Ané and
Geman (2000) studied first the S&P and FTSE 100 futures over the time period 1993-97,
then two high frequency dataset for technology stocks in 1997. In the second paper they
investigated whether stock returns had the Brownian motion features in a time scale repre-
sented by either the number of orders (trades) or their value (volume). They indeed found
empirical evidence of their claim, especially when business time was (non parametrically)
approximated by the number of orders. Their evidence was consistent with earlier unre-
lated contributions on the superior explanatory power of the number of trades for volatility,
as opposed to volume (Jones et al. (1994)). Some other papers, including and following
Clark’s seminal contribution, insist on the unobservability of business time, and on the fact
that trading activity — be it measured by the number of orders, their value or other measures,
such as turnover — is but one proxy of business time or market activity.

However, the answer was challenging too: Geman et al. (2001) indeed observe that if the
time change were continuous, it would produce a continuous price process, but it would
also be locally deterministic.> Since the whole purpose of modelling business time is to
incorporate the intuition of order and information-driven trading clock in the world of
stochastic processes for asset pricing, ending up with a locally deterministic trading time
does not seem to be appropriate. Let us forget about continuous price or log-price pro-
cesses then, and consider jump ones. Geman et al. (2001) observe that, “as time changes
are increasing random processes, they are for practical purposes purely discontinuous, if
they are not locally deterministic”. And pure jump time changes generate pure jump price
processes.

Pure jump Lévy models then reconcile the willingness of representing business time with
the one of excluding “naive” representations of it. And if this seems useful for general
asset prices, it seems even more helpful in the commodity domain. From now on we will
therefore focus on pure jump time changes and price processes.

2 Provided some fairly general technical conditions are met.
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10.3 TIME CHANGE AND COMMODITY PRICES

10.3.1 Univariate models

It is not by chance that Clark (1973) started the study of time changed Brownian motions
while analyzing cotton futures data. It is not so since the importance of demand and supply,
as well as related notions such as quantity in stock and delivery needs, are more important in
the commodity domain than for traditional financial assets. Temporary imbalances between
demand and supply, but above all frictions such as time or costs of delivery, seem to
be at odds with the smoothness of prices. This is why Lévy time changed prices have
been introduced in order to describe commodity prices. In such a framework, if S(¢) is a
commodity price at calendar time ¢, the general representation of its log return, Y (¢) =
In(S (1)/S (0)), will be

Y(t) = nG(t) + o B(G(1))

where © and o are constant, B(G(¢)) is a standard Brownian motion, evaluated at time
G(1); G(t) is a pure jump time changing process (a subordinator, most of the times?).

Even without explicit reference to the change-of-time issue, pure jump Lévy processes
have been successfully applied to energy pricing. Eberlein and Stahl (2003) advocate the
use of generalized hyperbolic (GH) distributions to model electricity prices and compute
the corresponding risk measures. They show that the GH parametrization monitors volatility
more accurately than the classical empirical variance estimator. Risk measures based on GH
calibrated models perform very well in backtests. Benth and Saltyte-Benth (2004) separately
fit a Normal Inverse Gaussian (NIG) dynamics to gas and oil prices. Benth et al. (2007)
use a non Gaussian, pure jump Ornstein-Uhlenbeck process for electricity spot modelling
and derivatives pricing; even though their model is additive instead of exponential, in order
to facilitate the passage from spot to forward dynamics, it has in common with the time
changed representation studied here both the pure jump feature and the fact of being simple
enough to ensure tractability. Geman and Roncoroni (2006), in order to reproduce both the
trajectorial and statistical properties peculiar to electricity prices, introduce a jump-reversion
model and calibrate it to a database of US different markets: they obtain excellent fits for
the first four moments, with a partial exception for skewness.

10.3.2 Multivariate models

When one moves from the univariate model just presented to the need of representing —
say — two assets, one question immediately arises. Do we need to consider the same time
change, or different ones? And in the second case, should the time changes be dependent
or independent?

The traditional answer consists in adopting a unique time change: a review of the theoret-
ical results is in Sato (1999). Madan and Seneta (1990) for instance, when introducing their
(symmetric) multivariate Variance Gamma (VG) process, a pioneering example of pure jump
dynamics, assume that a unique gamma subordinator drives all assets. The resulting prices
have a common parameter driving kurtosis, fixed dependence and cannot be independent.
Even outside the VG case, the presence of a unique subordinator limits the generality of the

3 Subordinators are a subclass of time changes, with independent and stationary increments.
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model, the common kurtosis behavior and lack of independence being but two reasons. Such
reasons limit the practical flexibility of multivariate time changed processes with one sub-
ordinator. Indeed Borger et al. (2007) applied such a common subordinator model, namely
its GH specification, to commodity prices in order to provide risk measures: according to
their same opinion, their statistical analysis should support further theoretical extensions,
since the restrictions on parameters imposed by a unique subordinator — which in the GH
case too affect kurtosis — are extremely important in the commodity domain. They show on
their data set how tails can differ from one commodity to the other.

A contrasting view with respect to the unique time change solution would be to assume
different time changes, or multivariate subordinators. Such multivariate time changes model
the fact that trade and information arrival are not the same for different assets or com-
modities: every market has its own business time. Barndorff-Nielsen et al. (2001) first
characterized multivariate subordinators and the corresponding time changed or subordi-
nated processes. They studied the mathematical properties of subordination of independent
Lévy processes, even outside the Brownian motion case. Based on their arguments, for n
assets one can then suggest a multivariate time change of the following type:

Yj(t) = ujG;(t) +0;Bj(G;j(t)) j=12...n (10.1)

where the Brownian motions are independent one from the other and with respect to the
time changes, while the subordinators G;(t), G(t), i # j need not be independent.

In order to keep the model analytically tractable, but above all in order to maintain
calibration by avoiding the introduction of an excessively large number of parameters,
Geman et al. (2008) suggest the adoption of a multivariate time change obtained as the
sum of a common and an idiosyncratic component, proper of each asset. By so doing, they
model the idea that trade in different commodities has a common component, on top of the
commodity-specific ones, and provide empirical ground for such an idea (see Geman et al.
(2008)). As an application of the general multivariate change with a common component,
Semeraro (2007) introduced a VG with such a subordinator — named o«—VG — which is
parametrized, for each couple of assets, by one parameter in addition to the marginal ones.
We summarize the mathematical properties of such multivariate «—VG in Appendix A.

In the VG case, the unique subordinator version of Madan and Seneta entails restrictions
on the marginal parameters, in particular on the one driving kurtosis, which is the same for
every margin. It also restricts correlation, which depends on the marginal parameters only.
This means that, for fixed margins, the modeler cannot describe different correlation levels
or, in other words, that marginal calibrations can turn out to be inconsistent with empirical
estimates of correlation.

In the «—VG multivariate case of Geman et al. (2008), the marginal (kurtosis, in par-
ticular) parameter restrictions which are required in the unique subordinator case do not
exist any more, and a whole range of linear dependence can be captured, even for fixed
margins. Indeed, time changes G;(¢) are distributed according to a gamma of parameters
(t Joj, 1/a j), where the parameters «; form the vector «. As a result, every margin is char-
acterized by three different parameters, o, u;, «;. Linear correlation of the Y ;(t), Y ;(t)
returns is given in Appendix A, and is independent of time. It depends on an additional
parameter a, which determines the weight of the common component in each time change
with respect to the idiosyncratic one. Luciano and Semeraro (2008) studied the dependence
properties of such a process by comparing its implied copula — i.e. the copula which results
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from the inversion of the actual bivariate process distribution at each point in time — with
the Gaussian one, in order to understand how much the process departs from Gaussianity
not only at the marginal, but also at the joint level. In order to do this, they calibrated the
process to a number of stock indices and measured the distance of the implied copula in
respect to the Gaussian copula which has the same correlation coefficient.

The VG specification will indeed prove to be among the best fitting ones in the calibration
of time changed processes to PJM and Natural Gas which follows: its « —VG multivariate
version will therefore be used to price the spread option.

We will enrich the study with a discussion of the PJM-NYMEX actual dependence,
or implied copula, which is inherently time dependent. We will also compare it with the
Gaussian copula, which is independent of time. Indeed, we advocate the use of a con-
sistently dynamic bivariate process, instead of forcing a pre-specified, or external copula
C(v, z), onto two marginally well defined processes, on theoretical rigorousness grounds.
However, since for practical reasons one can be interested in approximating the true pro-
cess behavior by forcing an external copula, we compare the actual, implied copula of the
process with an external, canonical and very well known one, namely the Gaussian. The
implied copula of the process at time ¢, C,, is obtained from the (empirical version) of
the distribution function of the joint process at time ¢, F,, by inverting Sklar’s theorem:

Ci(v.2) = F, (F,; (v). F;'(2))

where F,,;! and F; are the (generalized) inverses of the marginal distribution functions of
electricity and gas, at time ¢.
The Gaussian copula C g, instead is given by:

'@ o7l 1 2psw — 52 — w?
Cia(v, 2) :=/ / ———exp| —————— | dsdw
¢ —00 —00 27'[\/1 —,02 2(1 _p2)

where p is the linear correlation coefficient between the underlying processes S.(f) and
S ¢(t), which is constant over time, and ® is the standard normal distribution function. In
order to make the comparison sensible, such a parameter must be chosen so as to match
the linear correlation of the bivariate process, which in the «—VG case is given by (10.9)
in Appendix A.

In order to appreciate the difference, for any specific tenor ¢, between the actual and
approximating copula, C, and C g,, one can compute a distance between the corresponding
level curves. In the sequel we will adopt the normalized L! distance, namely

1 pl
d(t) =6 x f / | Ca(v,z) — Ci(v, 2) | dvdz
o Jo

since such a distance respects the concordance order. Normalization is obtained by mul-
tiplying the integral times the constant 6, since the maximum value of the un-normalized
distance, which obtains between the minimum and maximum copulas, is 1/6 (while, evi-
dently, the minimum value is zero). The properties of such a distance are illustrated in
Luciano and Semeraro (2008).

Obviously, any other distance could be used, and other comparison copulas could be
chosen. Our selection is motivated by the desire of knowing how far dependence of the
actual gas and electricity processes is from the Gaussian, linear one.
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104 AN APPLICATION TO PJM ELECTRICITY AND NYMEX
NATURAL GAS

The marginal gas and electricity prices involved in the spark payoff are those of future
contracts. The principal ways of coping with the presence of futures instead of spot prices
consist in either identifying spot and futures, considering that the latter have a short expiry,
or in building an HIM model for forward prices. We follow the first route, since the contracts
on which we calibrate the model are written on futures with a one-month expiry maximum.
The spark spread option will be written on futures with the same expiry.

The PJM electricity and NYMEX Natural Gas processes are calibrated on univariate call
and put option data for different strikes and maturities, as provided by Bloomberg. We
restrict our attention to the most liquid contracts, by excluding far in and out of the money
options. Actually, the moneyness of the selected contracts is between 0.9 and 1.1 for both
commodities. We include only maturities between 5 and 13 months. We could have used
subsets of such maturities, in order to take into account possible seasonalities. The calibra-
tions which follow have been checked for robustness in respect to seasonality, by performing
them on subsamples of maturities: 5 to 7, 8 to 10 and 11 to 13 months. The short maturity
subsample has indeed parameter and moment features apparently different from the others,
while both the medium and long horizon subsamples provide very similar results. Since in
this chapter we are interested in the bivariate properties of the calibrations, and in pricing
spread options for maturities close to one year, we maintain the marginal calibration results
for the overall sample. However, we recommend using marginal calibrations performed on
specific maturities in case one wants to account for seasonality appropriately.

For the purpose of our illustrative example we used 79 contracts on the PJM and 49 on
natural gas. We considered the Bloomberg quotes of PJIM electricity and NYMEX Natural
Gas on a single day (5 November 2007). However, we performed a robustness check of the
calibration results also in terms of reference day, and verified that the results were robust
in respect to the extension of the dataset to close days.*

We used as interest rate the one-year spot one on the US market, at the time of the
calibration, namely 4.01 %.

The convenience yield is the implied one: it is obtained as the average, for each single
option maturity, of the yields which ensure put call parity between the quoted options, over
different strikes.

10.4.1 Marginal calibration and marginal fit

The following processes are calibrated for each commodity: Black Scholes (BS), Variance
Gamma (VG), Normal Inverse Gaussian (NIG), Meixner, Carr Geman Madan Yor (CGMY),
Generalized Hyperbolic (GH). The probabilistic features of such processes are described in
Appendix B. The calibration is performed, as usual, by minimizing the pricing errors between
the observed and theoretical prices, obtained with the univariate Fourier space-time stepping
technique of Jackson et al. (2007). The robustness of the numerical search for the minimum

‘A complete analysis of the dataset, under the risk-neutral measure, is in the Master’s dissertation of Roberto
Marfé (Marfé 2008); it has been presented at the Il FIMA Conference, January 2008, under the title “Pure Jump
Models for Natural Gas and Electricity Pricing”. A copy is available from the author upon request.

3 For each single maturity, the yields which guarantee the parity over different strikes are very close to each other,
so that taking their average does not introduce a distortion in the calibration.
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in respect to the choice of the initial guesses has been checked throughout the VG case: in the
other cases, the starting point has been selected so that the moments matched the optimized
VG ones. Table 10.1 presents the resulting errors for the two energy prices at hand.

Table 10.1 Pricing errors of different time changed processes for PIM
electricity and natural gas prices, measured as relative root mean square
error (RRMSE), root mean square error (RMSE), absolute relative average
absolute error (ARPE), and average absolute error (AAE)

PIM RRMSE RMSE ARPE AAE

BS 20.375 % 53.771 % 6.141 % 46.635 %
VG 8.282 % 23.662 % 2.099 % 16.892 %
NIG 9.391 % 26.433 % 2.533% 19.892 %
MEIXNER 8.910 % 25.226 % 2.421 % 19.138 %
CGMY 8.217 % 23.675 % 2.105 % 17.054 %
GH 8.186 % 23.703 % 2.102 % 17.090 %
NAT GAS RRMSE RMSE ARPE AAE

BS 5.415% 5.718 % 4.542 % 4.864 %
VG 4.115% 3.984 % 3333% 3.236 %
NIG 4.240 % 4.289 % 3.714 % 3.716 %
MEIXNER 4.120 % 4111 % 3.546 % 3.506 %
CGMY 4.081 % 3.971 % 3335% 3.242%
GH 4.070 % 3.957 % 3.326 % 3.229%

RMSE is the root mean square error, which is calculated as the root of the squared errors
between market and model prices, divided by the number of options in the sample. AAE is
the average of the absolute error, in which the discrepancies between model and actual prices
are taken in absolute value instead of being squared. They broadly correspond to L? and L!
distances between actual and model valuations. RRMSE and ARPE are the relative versions
of the previous measures, in which the errors are computed as percentages of the market
price, so as to eliminate the influence of more valuable options in respect to cheap ones.

It is important to notice three features of Table 10.1. First, independently of the measure
selected, the BS model severely underperforms the pure jump models, usually with errors
twice as big as those of the competing models. Second, for any fixed measure, the other
models produce errors quite close in magnitude one to the other. Third, the ranking in
minimizing the pricing error is almost preserved, when one moves from one measure to the
other. However, we feel that, given the presence in the sample of options with quite different
prices, relative measures are more appropriate. We therefore concentrate our attention on
the RRMSE and ARPE measures. Based on these, the models GH and VG seem to be the
most appropriate for describing electricity and gas, on the chosen sample.

The optimal values of the parameters are reported in Table 10.2.

The parameters, whose meaning and whose relationship with the moments of the processes
are listed in Appendix B, are as follows: o for Black Scholes, o, u, « for the VG, «, 8,
8 for NIG and Meixner, C, G, M, and Y for CGMY, «, B8, §, and v for GH. From the
above parameters, Table 10.3 shows how moments of the underlying distributions can be
calculated using the formulas in Appendix B.
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Table 10.2 Fitted parameters of PJM and Natural Gas, under various assumptions on the underlying

distribution
Model PJM parameters
g
BS 0.34572
o I o
VG 0.435241 —0.04037 2.019923
o B 1)
NIG 1.169762 —0.13568 0.206466
MEIXNER 2.058221 —0.41856 0.089707
C G M Y
CGMY 0.279627 1.497869 1.97856 0.257689
o B 8 v
GH 1.842239 —0.24571 0.043524 0.245334
Model Nat Gas parameters
o
BS 0.4042
o “w o
VG 0.5048 —0.1254 1.3668
o B )
NIG 1.5981 —0.4571 0.3571
MEIXNER 1.6567 —0.8631 0.1740
C G M Y
CGMY 0.3979 1.3655 2.3911 0.3047
o B 8 v
GH 1.9749 —0.5190 0.0990 0.3596

Table 10.3 Moments of the PJM and Nat Gas, under various
assumptions on the underlying distribution

PIM variance skewness kurtosis
BS 0.12 - -
VG 0.19 —-0.30 3.38
NIG 0.19 —0.55 9.26
Meixner 0.18 —0.71 16.18
CGMY 0.20 —0.98 15.11
GH 0.20 —0.85 11.70
NAT GAS variance skewness kurtosis
BS 0.16 - -
VG 0.28 —-0.95 7.71
NIG 0.26 —1.21 10.45
Meixner 0.29 —1.42 10.76
CGMY 0.30 —1.28 9.74

GH 0.30 —1.34 9.91
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Such moments confirm the non-Gaussianity of the underlying, risk-neutral distributions
and show that they present negative skewness, as expected, and pronounced kurtosis. We
cannot directly compare such moments with the ones obtained from the time series of PJM
or NYMEX Natural Gas, since we are working under the risk-neutral measure. However,
let us remark that negative skewness and pronounced kurtosis were also characteristics of
the daily return time series in the whole year preceding our analysis, which we do not
report here.

10.4.2 Behavior of the bivariate gas-electricity process and of the spark spread

Simulation of a single time changed Brownian motion, as well as of the n-tuples in (10.1),
is quite an easy task once the distribution of the multivariate time change is known in closed
form. This is the case for the « —VG multivariate process above. Keeping in mind that the
pricing errors of the pure jump models are such that none strongly outperforms the others,
we therefore restrict the gas and electricity joint study, as well as the spark spread option
price, to the VG case. The only parameter which we did not obtain from the marginal option
calibration is the one driving dependence, namely a, which is in one-to-one relationship with
linear correlation via (10.9) in Appendix A. We present below both the independence (a
= 0) and the maximal linear dependence case (¢ = max(l/«q, l/ap) = 0.49). We do not
attempt a calibration of correlation since we would need the risk neutral one, and we do not
have liquidly traded spark options for inferring it. We do not use the historical correlation
between gas and electricity, since we do not want to impose invariancy of dependence from
the historical to the risk neutral measure.

Figure 10.1 presents two paths of the return processes on PJM and NYMEX Natural Gas,
named respectively Y | (f), Y 2(¢), obtained by simulating 10 000 joint realizations over a unit
(one year) interval, and the corresponding scatter plot at time one, when linear dependence
is null.

Figure 10.2 presents the corresponding paths and scatter, when the dependence is maximal,
and the corresponding parameter is a = 0.49.

The spark spread dynamic behavior corresponding to the decorrelated case, when the
initial values of the gas and electricity prices are as on our dataset, and assuming a heat
rate equal to 7.5, is given in Fig. 10.3.

In Fig. 10.4 we concentrate on the time evolution of dependence, by comparing the copula
level curves respectively at time 1 and 10 with the ones of the Gaussian copula which has
the same correlation coefficient. Evidently, we perform the comparison for the case with
dependence, since under independence both copulas collapse into the product one. You find
on the left hand the copula comparison at time one, on the right hand the time at ten one.
Dependence resembles more and can be better approximated by the Gaussian one when the
horizon increases.

In order to fully understand such dependence behavior, let us now compute the distance
between the implied copula of the VG process and the corresponding Gaussian one, for
different time horizons (Table 10.4). Such a distance decreases, without tending to zero.
Dependence therefore can be better approximated by the Gaussian copula as time elapses,
but does not collapse into Gaussian dependence.



Spark Spread Options 141

o4 = 0.4352 G, = 0.5048 11, = 0.0404 1, = 0.1254 oy = 2.0199 a, = 1.3668
5 T T T T T T T T

(O]
>
3
_15 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time
Scatter Plot/o VG
4 ~
2 -
0OF
&
o
4|
76 1 1 1 1 1 1 1 )
-3 -2 -1 0 1 2 3 4 5

Figure 10.1 An example of path and a scatter plot at time 1 of the electricity (Y1) and gas returns
(Y2), decorrelated case. The path has been obtained with 10000 time steps: the number of time steps
appears on the horizontal axis

10.4.3 Multivariate FST prices of the spark spread

In the «—VG case the spark spread option price, for a fixed heat rate and for fixed marginal
and joint parameters, can be obtained both by Monte Carlo simulation of the time-7" values
of the processes, or using the double FFT approach. We present here the FFT results,
obtained via the enhanced Fourier-time stepping (FST) of Jackson et al. (2007): the Monte
Carlo ones are almost identical, for an appropriate number of simulations.

The maturity has been fixed to one year in the first part of the table, ten years in the second;
the strike is zero, while the riskless rate is the same as for the calibration; the efficiency rate
is equal to 7.5. For the sake of comparison we present also the Black—Scholes price, which
has been obtained using the corresponding calibrated parameters for the margins (namely,
the BS volatility reported in Table 10.2) and the linear correlation corresponding to the two
selected values of a.°

Please remember that no approximating copula has been superimposed on the bivariate
VG process. As the reader can notice, all others equal, the «-VG call price is always greater
than the BS price, since the former accounts for fat tails, while the latter does not. Both
decrease with correlation, as expected, but the sensitivity of the «-VG price is higher, since
it includes also non linear dependence. If we change the time to expiry of the option, the

6 Please notice that, differently from what happens under a unique subordinator, the spark spread option can be
obtained under various hypotheses on linear correlation.
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Figure 10.2 An example of path and a scatter plot at time 1 of the electricity (Y1) and gas returns
(Y2), correlated case. The path has been obtained with 10000 time steps: the number of time steps
appears on the horizontal axis
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Figure 10.3 An example of path until time 1 of the spark spread, decorrelated case, when the heat
rate is 7.5. The number of time steps shows up on the horizontal axis
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Figure 10.4 Comparison between the implied copula PJM/NatGas and the corresponding Gaussian
copula, at time 1 (left hand side) and 10 (right hand side). The implied copula level curves (from 0.1
to 0.9) are solid lines, the corresponding Gaussian are dotted

Table 10.4 Distances between the implied and corresponding Gaussian
copula, for different time horizons, correlated case

a#0 t

172 1 10 100
d(t) 8.2578 % 3.2839 % 3.2691 %

Table 10.5 Spark spread prices with expiry one year (T = 1) and 10 years (T = 10), K =
0, for the decorrelated (a = 0) and correlated case (a = 0.49), in the Black—Scholes (BS)
calibrated model and in the corresponding «—VG one. The left hand side presents call
option prices (the spark spread ones), while the right hand side presents the corresponding
put prices

call option price put option price
BS a-VG-Fourier- BS a-VG-Fourier-
time stepping time stepping

T=1
a=20 18.1594 20.0222 11.2644 13.1272
a =049 17.9646 19.0772 11.0696 12.1822
T=10
a=0 35.8644 45.1430 28.9694 38.2480

a =049 35.5606 44.8865 28.6656 37.9915
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difference between the BS and VG call prices changes because of the difference in the
margins over time (BS wrt VG)” and because the VG dependence evolves over time, while
the BS does not. As a whole, the call difference increases with time. Symmetric comments
hold for the put prices.

Table 10.6 presents the behavior of the spark spread prices in respect to moneyness, when
T = 1. Call prices decrease and put prices increase with K, as expected.

Table 10.6 Spark spread prices with expiry one year, for different non null strikes K,
for the decorrelated (a = 0) and correlated case (a = 0.49), in the Black—Scholes (BS)
calibrated model and in the corresponding «—VG one

call option price put option price
BS a-VG-Fourier- BS a-VG-Fourier-
time stepping time stepping
K =5
a=0 15.3846 17.2782 13.2883 15.1819
a =049 15.1843 16.2802 13.0880 14.1839
K =10
a=0 12.9007 14.8758 15.6030 17.5781
a =049 10.7170 13.9810 13.4193 16.6833
K = —
a=0 21.2125 23.0752 9.5188 11.3815
a =049 21.0272 22.2675 9.3335 10.5738
K=-10
a=0 24.5252 26.4045 8.0329 9.9122
a =049 24.3527 25.7602 7.8604 9.2679

10.5 CONCLUSIONS AND FURTHER RESEARCH

This chapter priced the spark spread option, a correlation product of paramount impor-
tance in hedging and real option valuation in energy markets. It used subordination to
model joint commodity behavior and — for a case in which subordination gave explicitly
the joint characteristic function — exploited the recent FST numerical approach to spread
pricing.

Marginally, we have been able to provide an excellent fit. Jointly, we have adopted a
multivariate subordinator, i.e. we have assumed that the change of time — or trade, or infor-
mation arrival — is not the same over different commodities. Apart from intuitive sense, such
a multivariate change of time has the main advantage, compared to a univariate subordinator
representation, of imposing no constraints on the marginal parameters and allowing a study
of prices as function of dependence, as is evident from Tables 10.2 and 10.6 above. With a
unique subordinator, such possibilities are precluded. In the VG case in particular the adop-
tion of a univariate subordinator would have led to equating the kurtosis parameter — and
therefore the heavy-tailedness — of each margin. It would have also produced a unique cor-
relation coefficient, since with a unique subordinator marginal parameters by themselves

7 Please notice that we left seasonality out of the picture on purpose. However, seasonality could be added for
practical applications, by adjusting appropriately the marginal risk neutral calibration as specified in Section 10.4.1.
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determine dependence. On the contrary, from the approach of this chapter we are able to
capture different correlation levels to adapt to real world dependence and its higher level
during crises.

In spite of multivariate change of time, spark spread option prices can be easily obtained
by FST transforms without superimposing a copula.

The progressive disclosure of spark spread quotes will allow us to calibrate dependence
to observed deals or to monitor their consistency with stress tested correlations. Hedging
ratios too are in the agenda for future research.

10.6 APPENDIX A: MODELLING SPECIFICATION
IN THE MULTIVARIATE CASE

The multivariate subordinator applied here for spread option pricing is studied in Geman
et al. (2008). It can be defined starting from an infinitely divisible law, as follows: let the
random variables X;, j = 1, ... , n and Z be non negative, independent and infinitely
divisible. Define the components of the random vector W as the weighted sums of the
common component Z and the idiosyncratic ones, X:

W=W,Wy... W) =X1 +1Z, X2+ wZ,.... Xy + 2, 2)", (10.2)

where «j, j = 1, ... , n are non negative parameters. Define G = {G(¢), t > 0} as the
Lévy process which has the law £ of W at time one:

LG(1)) = LW). (10.3)

Given that G is a subordinator, assume that it has zero drift.

Let B; = {Bj(t), t20} j = 1, ... , n be independent standard Brownian
motions, independent of G too, which we will time-change. Consider the process
B ={B(1),t > 0}

B(t) = (uit + 01 Bi(1), ..., pnt + 0, B, ()T, (10.4)

the Lévy triplet of which is obviously (p, X, 0), where p = (m..u,,)T and ¥ = diag(o,
., 0.
The time changed processes at time ¢ will be collected in the vector Y (¢) and interpreted
as log returns. The multiparameter log return process ¥ = {Y (¢), ¢+ > 0} is indeed obtained
by time changing B via the subordinator G:

Yi() n1G1(#) + 01B1(G1())
Y(t)= = . (10.5)
Y, () mnGr(t) + 0, B, (G, (1))

The process Y, as given by (10.5), is a Lévy process with characteristic function

E[e'®Y )] = exp(1Wg (log Y5 (2))), z € RY, (10.6)
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where Y p is the characteristic function of the Brownian motion B and for any w =
(w, ..., w,)T € C" with Re(wj)) <0, j=1,... n,

Yo (w) = / e™*) — 1v(dx)
Rn

is the characteristic exponent of G.
The characteristic triplet (yy, Xy, vy) of Y is as follows

lx|<1

>w=/ veds) [ xpy(dr).
R,
Yy =0, (10.7)

w®) = [ p(Byais)
RY
where p, = L(B(s)), s e R:, x = (xq, ... x)7 and B € R” \ {0}.
Let us now consider the particular case in which the random variables defining the
subordinator are gamma ones, namely

b b
L(Xj)=T(——a,—)

aj aj
L(Z) =T(a,b)

and 0 < o; < s. Under independency of Z from all the X, this entails

b b
LW;) = F(;, ;)
joY

th b
L(G;(t) = F(;, ;)
J J

and the subordinated process, named «—VG and first introduced in Semeraro (2007), is
an extension of the multivariate VG in Madan and Seneta (1990). For normalization pur-
poses, in financial applications b is taken to be one: at each point in time the common
component is therefore a gamma random variable, the “magnitude” of which is measured
by the a parameter. Such a parameter obviously appears in the characteristic function of
the ultimate process, Y. The characteristic function (10.6) of Y is indeed

n n n
: 1 (L —a) . 1 —ta
Yyoy@) =[]0 =) anlipju; - EUA,-Zui)) A=Y i — Eafuﬁ)) !
=1 =1 j=1
(10.8)

and it comes down to the multivariate VG one when only the common time change exists.
The linear correlation of the subordinated process Y in the «—VG case is

Hripjoeia

J©? +utan©? + idaj)

ey, j) = (10.9)
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10.7 APPENDIX B: ALTERNATIVE MODELLING
SPECIFICATIONS IN THE UNIVARIATE CASE

Appendix B collects the definitions of the univariate processes tested in section 10.4.1 above.

10.7.1 Variance gamma

A variance gamma VG process with parameters o > 0, u, @ > 0, is a real Lévy process
Xve = {Xvg(t), t > 0} with characteristic function

1 :
Yygw) = (1 —iupa + Eozomz)_i.

It can be obtained as a Brownian motion with drift time changed by a gamma process. In
turn, a gamma process {G(¢), t > 0} with parameters (a, b) is a Lévy process such that the
defining distribution of X (1) is gamma with parameters (a, b) (shortly £L(X (1)) = I'(a, b)).
Its characteristic function is

Vo) = (1 —iu/b)™ .

VG processes have been introduced by Madan and Seneta (1987, 1990).

A VG process has no Gaussian component. The paths of the VG process are of infinite
activity and finite variation. Its moments at time 1, namely the mean m, the variance v, the
skewness s and the kurtosis &k, are as follows:

m=u (10.10)
v =02+ au? (10.11)
pua (302 + 2au?)
= 10.12
(0-2 + Ol,u2)3/2 ( )
k=31+2a —ac*(c?+ap®?) (10.13)
10.7.2 Normal inverse Gaussian

A normal inverse Gaussian (NIG) process with parameters « > 0, —a¢ < 8 <o, § >0

is a real Lévy process Xyig = {Xnig(t), t = 0} with characteristic function
UniG(2) = expt (—=8(Va? — (B +iu)? — Va2 — B2, (10.14)

and Lévy measure given by
od
vviG(dx) = —=exp(BX)Ki(a | x )/ | x [ dx

where K is the Bessel function of the first kind.
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It can be obtained as a time changed Brownian motion when the time change is IG. In
turn, an inverse Gaussian (1G) process with parameters (a, b) is a Lévy process for which
the defining distribution of X (1) is IG with parameters (a, b) (shortly L(X (1)) = [ G(a, b)).
The IG process has the following characteristic function:

Vi (z) = expt(—a(v/—2iu + b2 — b). (10.15)

NIG processes have been introduced by Barndorff-Nielsen (1995).

A NIG process has no Gaussian component. It has infinite activity and infinite variation.
Its moments at time 1, namely the mean m, the variance v, the skewness s and the kurtosis
k, are as follows:

o
v=a25(?— g3 (10.17)
s =3Ba" 1872 (a% = p2)i (10.18)
2 2
k=304 2 T4 (10.19)

S0 o — P

10.7.3 Meixner

A Meixner (M) process, with parameters «, 8, 8 , is a Lévy process Xy = {X (), t > 0}
with characteristic function

(10.20)

cos(B/2) 2
cosh ((cu — i) /2))

Yy u) = <

The Meixner process can be obtained as a time changed Brownian motion when the time
change is Meixner with parameters (2, 0O, 7).

The Meixner process has been introduced by Schoutens and Teugel (1998). It has no
Gaussian part. The paths have infinite variation. The moments at time 1, namely the mean
m, the variance v, the skewness s and the kurtosis k, are as follows:

m = ad tan(B/2) (10.21)
v = %a28/ cos?(B/2) (10.22)
s = +/2/8 sin(B/2) (10.23)

2 —cospf

k=345 (10.24)
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10.74 CGMY

A Carr Geman Madan Yor (CGMY) process, with parameters C, G, M > 0 and
Y < 2, is a Lévy process Xcomy = {Xcomy(t), t = 0} in which the characteristic fun-
ction is

Veeomy ) = exp(CtT(=Y)(M — iu)Y — MY + (G +in)' — GY)), (10.25)

The CGMY process can be obtained as a time changed Brownian motion when the time
change is characterized as in Madan and Yor (2005).

CGMY processes have been introduced by Carr ef al. (2002). If ¥ < 0 the paths
have finite activity; if ¥ € [ 0, 1) they have infinite activity and finite variation;
if Y € [ 1, 2) they have infinite activity and variation. The CGMY moments at
time 1, namely the mean m, the variance v, the skewness s and the kurtosis k, are as
follows:

m=CM!'' -G Hhra-v) (10.26)

v=CM'2-G" Hre-vy (10.27)
Y-3 _ Y3 _

o cM G/ 3)ra-v) (1028)

[cmMY-2 -T2 -1)]"?
CMY -G Hr@E-v)

k=3+ 5
[C(MY—2 - GY2)r2-Y)]

(10.29)

10.7.5 GH

The Generalized Hyperbolic ( GH) process, with parameters « , 8, Sand v , is a Lévy process
Xou = {Xgu(t), t > 0} with characteristic function

g K (5 @ — B+ iu)z)
_ , 10.30
Vet (oﬂ —(B+ iu)2> K, (/o= 57) -

The GH process can be obtained as a time changed Brownian motion when the time
change is Generalized Inverse Gamma.

GH processes have been introduced by Barndorff-Nielsen (1997) The paths have
finite activity and infinite variation. The GH first moment at time 1, namely the
mean m, is:

Kyt1 (SM)
(@2 = B2) K, (807 = B2)

m = f8
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Freight Derivatives and Risk Management:

A Review

Manolis G. Kavussanos and Ilias D. Visvikis

11.1 INTRODUCTION

During the last two decades there has been a significant growth in financial instruments
that can be used to address the need of “protection” in the volatile economic environment
in which business operate. While financial derivatives products such as futures, forwards,
options, and swaps, have a long history in the management of risk for various commodities,
these instruments have started to be used consistently by the shipping industry only during
the last decade.

Shipping markets can be characterized as being capital intensive, cyclical, volatile, and
seasonal, while shipping companies are exposed to the international business environment.
Shipping freight derivatives have the potential to offset (hedge) freight rate risk of the
dry-bulk and wet-bulk (tanker) sectors of the shipping industry.! The volatility observed
in freight rates constitutes a major source of business risk for both the shipowner and
the charterer. For the charterer wishing to hire-in vessels for transportation requirements,
increasing freight rates leads to higher costs. For the shipowner, lower freight rates involves
less income from hiring out the vessels. For a detailed analysis of the business risks prevalent
in the shipping industry, and the traditional and derivative strategies that may be used to
tackle them see Kavussanos and Visvikis (2006a, 2007).

Freight derivatives can provide real gains for market participants in shipping, as their
existence has made risk management cheaper, more flexible and readily available to parties
exposed to adverse movements in freight rates. Freight derivatives contracts, compared
to time-chartering a vessel (a traditional risk management method), are more effective
instruments for managing freight market risks. This is because shipowners retain operational

Manolis G. Kavussanos, Ph.D., Professor of Finance, Athens University of Economics and Business, 76 Patission
St., 10434, Athens Greece., Email: mkavus@aueb.gr.

Ilias D. Visvikis, Ph.D. Assistant Professor of Finance, ALBA Graduate Business School, Athinas Ave. & 2A
Areos St., 16671, Vouliagmeni, Athens, Greece, Email: ivisviki@alba.edu.gr.

'In the dry-bulk sector, vessel markets are segmented as follows: Capesize vessels (100 000—180000 dwt —
deadweight) carrying iron ore and coal; Panamax vessels (50000—79000 dwt) carrying coal, grain, bauxite;
Supramax vessels (52000 dwt); Hanymax vessels (25000—-49999 dwt); and Handysize vessels (10000—-24 999
dwt) carrying minor bulks and smaller parcels of major bulks such as grain, coal and bauxite. In the wet-bulk
(tanker) sector, vessel markets are segmented as follows: Ultra-Large Crude Carriers (ULCCs, 320000 + dwt);
Very-Large Crude Carriers (VLCCs, 200 000-319999 dwt); Suezmax vessels (120000—199999 dwt); Aframax
vessels (75000-119999 dwt); Panamax vessels (50000-74999 dwt); and Small Product Tankers (Coasters,
10000—-49 999 dwt), all carrying crude oil and oil products.
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control of their vessels and at the same time benefit from favourable spot market condi-
tions. Also, charterers are free from any operational risks which are present in time-charter
agreements. Freight derivatives contracts allow entrepreneurs in the sector to get on with
the business they know best, and yet manage their freight rate risk through this separate
“paper” market. Commissions payable to brokers are lower in freight derivatives compared
to chartering agreements. The low commission structure and their simple nature imply that
it is cheaper and easier to trade in and out of freight derivatives positions prior to the settle-
ment month than trading in and out of physical positions, where the costs are higher. Also,
there is no physical delivery involved with freight derivatives. They simply settle in cash
upon conclusion of the agreed terms.

Besides the above benefits to principals (shipowners and charterers) freight derivatives
are useful to: (i) energy and commodity traders, since they allow them the opportunity to
participate in pure trading and/or to hedge their physical shipping exposure; (ii) financial
institutions, which participate in this market for proprietary trading and to offer hedging ser-
vices to their clients; (iii) oil/energy companies/refineries for the opportunity they offer to
hedge against the physical shipping freight rate volatility and to create a positive cash-flow
management; and (iv) institutional non-shipping investors (such as hedge funds, private indi-
viduals, etc.), as they provide the opportunity to invest in a commodity with different cycle
patterns compared to other sectors, thus providing the opportunity for arbitrage between
sectors and complement/diversify their shipping equities portfolio.

Market participants using the freight derivatives markets come from all sectors of the
shipping industry. They include shipowners (20 %), charterers and operators (fleet man-
agers/freight traders, 30 %), trading companies (grain, coal, electricity, oil traders, 40 %),
financial houses and banks (10 %). Regional trading during 2006/2007 is estimated to be:
70 % from Europe, 25 % from Asia and approximately 5 % from the US. The value of trading
for speculation is more than twice that for hedging, being 70 % and 30 % respectively.

Currently, market participants utilize various derivatives products in order to hedge them-
selves against the adverse freight rate fluctuations; these products are Over-The-Counter
(OTC) and cleared — through a clearing-house — freight forwards, exchange-based cleared
freight futures and OTC and cleared freight options. This chapter aims to provide an outline
of the characteristics and markets of these products and discuss the empirical work presented
in the literature thus far. Section 11.2 discusses forward freight agreements, namely FFAs.
Section 11.3 presents the freight futures contracts listed in the specialized maritime products
exchange, namely the International Maritime Exchange (IMAREX), and lately at the New
York Mercantile Exchange (NYMEX). Section 11.4 discusses the issue of credit risk in
FFAs and how the London Clearing House (LCH.Clearnet) and the Singapore Exchange
AsiaClear provide solutions to this problem. Freight options are presented in Section 11.5.
Section 11.6 outlines the empirical research findings in these markets, while Section 11.7
concludes the chapter.

11.2 FORWARD FREIGHT AGREEMENTS

The first OTC freight derivatives product appeared in 1992 and is called the Forward Freight
Agreement (FFA) contract. FFAs are private principal-to-principal Contracts for Difference
(CFDs) between a seller and a buyer to settle a freight rate, for a specified quantity of
cargo or type of vessel, for usually one, or a combination of the major trade routes of the
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dry-bulk or tanker sectors of the shipping industry. Since FFAs are “tailor-made” to suit
the needs of their users, they have become very popular with market participants wishing
to hedge freight rate fluctuations (Kavussanos and Visvikis, 2003a, b).

In OTC derivatives markets each party accepts credit-risk (or counter-party risk) from
the other party. The institutions that facilitate this market are major shipbrokers, investment
banks, and other financial intermediaries in the fund management industry. The primary
advantage of an OTC market is that the terms and conditions of the contract are tailored
to the specific needs of the two parties. This gives investors flexibility by letting them
introduce their own contract specifications in order to cover their specific needs. The OTC
market allows its participants to quickly respond to changing needs and circumstances by
developing new variations of old contracts.

The dry-bulk trading routes, which serve as the underlying assets of the FFA contracts
today, are either from the Baltic Panamax Index BPI (Table 11.1), the Baltic Capesize
Index (BCI), the Baltic Supramax Index (BSI) or the Baltic Handysize Index (BHSI).?
These indices comprise freight rates designed to reflect the daily movement in rates across
dry-bulk spot voyage and time-charter rates.> Regarding wet-bulk trades, the underlying
trading routes are from the Baltic Dirty Tanker Index (BDTI) and the Baltic Clean Tanker
Index (BCTI). As can be seen in Table 11.1 for example, each (major) route included in
these indices is given a number, which is recorded in the first column of the table. They
refer to: vessel size (column 2); certain cargo (column 3); route description (column 4);
while the weight assigned to each route is reported in the last column of the table. Each
route is given an individual weighting to reflect its importance in the world-wide freight
market at the time the index is constructed.

Table 11.1 Baltic Panamax Index (BPI) Composition, 2007

Routes  Vessel Size (dwt) Cargo Route Description Weights
P1A_03 74000 T/C Transatlantic round voyage 25 %
P2A_03 74000 T/C Skaw—Gibraltar range to Far East 25 %
P3A_03 74000 T/C Japan—South Korea range to Pacific 25 %
P4.03 74000 T/C Far East to NOPAC South Korea pass 25 %
P1 55000 Light Grain US Gulf to Amsterdam, Rotterdam Antwerp 0%
(ARA) region

P2 54000 HSS US Gulf to Japan 0%
P3 54000 HSS NOPAC to Japan 0%
Notes:

e The vessel size is measured by its carrying capacity (dwt — deadweight tonnes) and includes the effective cargo,
bunkers, lubricants, water, food rations, crew and any passengers.

e Routes P1A, P2A, and P3A and P4 refer to time-charter (T/C) contracts, while P1, P2, and P3 refer to voyage
routes.

e HSS stands for Heavy Grain, Soya and Sorghum.

Source of data: Baltic Exchange.

2 The detailed composition and description of the Baltic indices can be found at the website of the Baltic Exchange
(www.balticexchange.com). The Baltic was formed in 1883 to bring together market participants wishing to buy
and sell freight services. This physical pooling of participants in an organized market is equivalent, amongst other
things, to pooling of information, which helps discover prices and contributes towards the efficient working of
markets.

3 Voyage charters are paid as freight in US$/ton to move goods from port A to port B and all costs paid by the
shipowner. Time-charters are paid as freight in US$/day, under which the shipowner earns hire every 15 days or
every month. He operates the vessel under instructions from the charterer who pays voyage costs.



156 Risk Management in Commodity Markets

Provision is made so that the composition of the Baltic indices is altered over time, in
line with developments in the sub-sectors of the shipping industry, in order to continue
to reflect changing trading patterns. Specifically, at all times, the routes in the indices are
chosen carefully by analysis of the percentage revenue value of the main commodities
on the physical (spot) market, the total number and frequency of voyage fixtures by each
commodity, and the balance of geographic origin and ton-mile contribution.

Since their introduction, FFA deals have grown substantially in both volume and value
terms. Figures 11.1 and 11.2 show, respectively, the volume (number of contracts) and mar-
ket value (in US$ billion) of dry-bulk FFA transactions, from inception until the end of 2006.
The volume/value of trading has followed an exponential rise. The current growth of the
FFA trades is expected to continue, with FFAs covering increasingly larger proportions of
the underlying market. The exponential rise in FFA trading and the increasing liquidity and
transparency of the market create increasing benefits to both shippers and direct customers,
as well as intermediaries, such as forwarders and brokers.

10 000 —
2 8000 LB
1] I

§ 6 000 —H H H
5

5 4000 NN
Ke)

£

>

Z 2000 _’— —H H H

O_,ﬁlﬁml—ll_ll_ll_lﬂ

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Figure 11.1 Yearly volumes of dry-bulk FFA contracts (Jan. 1992—Dec. 2006)
Source of data: Clarksons Securities Ltd.
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The following example illustrates their use. Assume that today is 25 September 2007 and
that a charterer, which has to pay the cost of transporting his cargo of grain, believes that in
one month (30 October 2007) freight rates in the trading route BPI, P2A (Skaw—Gibraltar
range to Far East — 45 days) may increase from today’s level of $78 000/day. In order to
protect himself from a potentially more expensive market, he buys an FFA contract through
his freight derivatives broker, in order to hedge his physical market exposure of $3 510000
(= $78000/day x 45 days). The broker will match this interest by finding another party, say
a shipowner, which is the provider of the shipping service. The latter offers his Panamax
vessel for hire, and anticipates that freight rates in the BPI P2A route may fall in one month
from now. The shipowner will then sell an FFA, which expires in one month, at $78 000/day
agreed today. Both parties, the shipowner and the charterer, would have locked their freight
hire rate at $78 000/day.

To see this, assume that during 30 October 2007, the settlement price that is the average
of the last seven business days prior to expiry is $91000/day. As the freight market has
increased, contrary to the expectations of the shipowner, the seller (shipowner) must pay
$13000/day (= $91000-$78000) to the buyer (charterer), which amounts to $585000
(= $13000/day x 45 days). Payment between the two parties is made by money transfer in
US dollars within five business days following the settlement date. However, in the stronger
physical (spot) market, the shipowner (charterer) gains (loses) $13000/day, i.e., $585 000
more than he was expecting. Therefore, the net effect for both parties is that their cash-flows
from the combined FFA—spot market portfolio were stabilized by locking in October’s rates
at $78 000/day.

In the dry-bulk market, voyage-based contracts are settled on the difference between the
contracted price and the average prevailing value of the route selected in the index over the
last seven working days of the settlement month. Time-charter-based contracts are settled on
the difference between the contracted price and the average index value over the calendar
settlement month. In the tanker market, a tanker FFA contract is an agreement between
two parties to fix a freight rate in Worldscale units on a predetermined tanker route, over
a voyage, at a mutually agreed price.* Settlement takes place at the end of each month,
where the fixed forward price is compared against the monthly average of the spot price
of the tanker route selected. If freight rates fall below the agreed rate, the charterer pays
the difference between the agreed FFA price and the settlement spot price; if rates increase,
then the charterer receives the difference.

11.3 FREIGHT FUTURES

The first freight derivatives product was the Baltic International Freight Futures Exchange
(BIFFEX) contract, which was trading in the London International Financial Futures and
Options Exchange (LIFFE) from May 1985 until April 2002. Its underlying asset was
the index basket value of the Baltic Freight Index (BFI). However, the BIFFEX con-
tracts did not produce overly effective hedges as discussed in Kavussanos (2002). The

4 “Worldscale” was created in 1969 to assist the oil market have an independent unit of measurement of rates.
Market levels of freight rates are expressed as a percentage of the scale rates instead of a plus or minus percentage.
Worldscale rates are derived assuming that a “nominal” tanker functions on round voyages between designated ports.
The calculated schedule rate (which equates to different US$/ton equivalents for each different route combination)
is referred to as “Worldscale 100” or “Flat rate”. Thus, Worldscale 100 means 100 points of 100 percent of the
published rate or, in other words, the published rate itself.
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unsatisfactory hedging effectiveness, the lack of liquidity towards the end of BIFFEX’s
life, coupled with the inception in 1992 of the OTC-traded FFA contracts, contributed to
the decline in the volume of trading of BIFFEX contracts to levels which did not make it
sustainable any more and during April 2002 LIFFE withdrew the contracts from its trading
floor.

Since then, freight futures have been available in the organized exchanges of the Inter-
national Maritime Exchange (IMAREX) in Oslo and the New York Mercantile Exchange
(NYMEX) and are cleared in their associated clearing-houses. Clearing offers multilateral
netting, removal of credit risk, standardized contracts, daily mark-to-market of positions,
and increase in trading liquidity. According to market sources, contract clearing has reached
25 % of the total freight derivatives trades as of July 2007. Clearing allows not only new
shipping entrants but attracts non-shipping related companies as well (for example, steel
mills, coal mines, energy houses, and other companies in China, India, and Japan). Other
new participants coming into the market are banks, hedge funds (e.g. Castalia Fund Man-
agement Ltd., Clarkson Fund Management Ltd., Global Maritime Investments (GMI), etc.)
and other financial institutions, resulting in a more sophisticated and liquid market.

11.3.1 Freight futures at the International Maritime Exchange (IMAREX)

IMAREX launched a complete marketplace for freight derivatives on 2 November 2001.
Its initial focus was to establish a market for trading and clearing tanker freight derivatives.
In mid-2002, its operations extended to the dry-bulk cargo sector. In partnership with the
Norwegian Options and Futures clearing-house (NOS), IMAREX has become a regulated
marketplace for trading and clearing freight derivatives.’

Trading for market participants can be facilitated directly on the IMAREX trading screen
or via an authorized third-party freight derivatives broker (e.g. Clarksons, Simpson Spence
& Young, Freight Investors Services, etc.). A potential trader on IMAREX can obtain
either a direct membership account or get access to the IMAREX marketplace through a
financial intermediary, called a General Clearing Member (GCM), which can be a shipping
derivatives broker or a shipping lending bank. In a direct membership structure, principals
enter into membership agreements with both IMAREX and NOS. On 18 December 2006,
NOS expanded its clearing facilities for freight market investors by opening for clearing via
GCMs. Customer segments at IMAREX include international shipping companies, energy
companies, refineries, commodity and financial trading houses.

Table 11.2 presents the “Dirty” and “Clean” tanker freight futures (listed), FFAs (non-
listed) and options (non-listed) contracts offered by IMAREX at the time of writing. Freight
derivatives on other freight routes are also offered upon demand by negotiation, but do not
appear on the table. As can be observed, the IMAREX derivatives products have as the
underlying commodity (that they use for settlement) the route freight indices constructed
by either the Baltic Exchange or Platts.® Market agents can select either contracts that are
listed at IMAREX or non-listed contracts. Both are cleared through NOS.

5 More information about IMAREX can be obtained at: www.imarex.com.

6 Platts is a provider of energy news, price benchmarks, energy intelligence, and decision-support services to the
industry. It covers the petroleum, petrochemical, electricity, natural gas, coal, metals, nuclear power, bunker fuels,
and freight rate markets. Its products range from real-time news and pricing services to newsletters and maga-
zines, market reports and in-depth studies, databases, electronic directories, and research services. Its customers
include producers, traders, market-makers, refiners, and analysts. More information about Platts can be obtained
at: www.platts.com.
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Table 11.2 IMAREX dirty and clean tanker derivatives, 2007

Routes  Sector Route Cargo  Cargo Size Type of Settlement
Description Size (mt) (barrels) Contract Index

Panel A: Dirty Tanker Derivatives

TD3 VLCC AG - East 260000 1925000 Listed — Futures, Baltic
Asian Option
TD4 VLCC West Africa — USG 260000 2002000 Listed — Futures Baltic
TDS5 Suezmax West Africa — USAC 130000 1001000 Listed — Futures, Baltic
Asian Option
TD7 Aframax North Sea — 80000 616000 Listed — Futures, Baltic
UK/Cont Asian Option
TD9 Aframax Caribs — USG 70000 539000 Listed — Futures Baltic
TD8 Aframax AG - Singapore 80000 616000 Non-Listed — FFA Baltic
(FO)
TD10  Panamax Caribs — USAC 50000 385000 Non-Listed — FFA Baltic
TDI12 Panamax ARA - USG 55000 423500 Listed — Futures Baltic

Non-Listed — FFA

Panel B: Clean Tanker Derivatives

TC1 LR 2 AG - Japan 75000 577500 Listed — Futures Platts

TC2 MR Cont — USAC 37000 254100 Listed — Futures Baltic

TC4 MR Sing — Japan 30000 231000 Listed — Futures, Platts
Asian Option

TCS LR 1 AG - Japan 55000 423500 Listed — Futures Platts

TC6 MR Algeria/Euromed 30000 - Listed — Futures Baltic

Notes:

e LR 1 refers to Long Range Product Carriers between 55,000mt and 85,000mt.
e LR 2 refers to Long Range Product Carriers over 85,000mt.

e MR refers to Middle Range Product Carriers between 25,000mt and 55,000mt.
e The trading unit is Worldscale (WS) prices.

Source of data: IMAREX.

At the time of writing, there were four single-route freight futures contracts written
on the dry-bulk routes produced by the Baltic Exchange. These are shown in Table 11.3,
panel A. They involve the Capsesize voyage routes C4 and C7 and the Panamax time-charter
routes P2A and P3A, as these routes attract most of the dry-bulk freight derivatives trad-
ing, both at IMAREX and in OTC markets. Besides the futures contracts written on the
Baltic single route indices, Table 11.3, panel B shows the three time-charter “basket”
futures contracts, which are listed and traded at IMAREX. These “baskets” of time-charter
rates are constructed from the Baltic dry-bulk route indices of Capesize, Panamax, and
Supramax markets’ routes. Thus, the four time-charter values of routes C8, C9, C10, and
C11 of the BCI are used to calculate CS4 T/C, representing the average time-charter rate
that could be earned in the Capesize sector. Similarly, the average of the four Panamax
time-charter routes (P1A, P2A, P3A, and P4) of the BPI produces the PM4 T/C, while
the SM6T/C is the average of the six Supramax BSI routes (S1A, S1B, S2, S3, S4A,
and S4B).
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Table 11.3 IMAREX single route and T/C “basket” dry-bulk derivatives, 2007

Routes Sector Route Description Cargo Size (mt)  Type of Contract

Panel A: Single Route Dry-Bulk Derivatives

C4 Capesize Richards Bay — Rotterdam 150000 Listed — Futures
C7 Capesize Bolivar — Rotterdam 150000 Listed — Futures
P2A Panamax T/C Skaw Gibraltar — Far East 74000 Listed — Futures
P3A Panamax T/C S.Korea — Japan Pacific R/V 74 000 Listed — Futures

Panel B: T/C Basket Dry-Bulk Derivatives

CS4T/C Capesize Capesize T/C routes Average 172000 Listed — Futures
PM4T/C Panamax Panamax T/C routes Average 74 000 Listed — Futures
SM6 T/C Supramax  Supramax T/C routes Average 54000 Listed — Futures

Source of data: IMAREX.

11.3.2 Freight futures at the New York Mercantile Exchange (NYMEX)

Since 16 May 2005, the New York Mercantile Exchange (NYMEX) has offered nine tanker
freight derivatives in its electronic trading platform. NYMEX is the world’s largest phys-
ical commodity futures exchange and the trading forum for energy and precious metals.”
Transactions executed on the exchange avoid credit risk because its clearing-house, Clear-
Port(sm), acts as the counterparty to every trade. They use as underlying commodities the
Baltic Exchange or the Platts indices. Table 11.4 presents the specifications of the underlying
indices; they are the five “dirty” tanker routes TD3, TDS, TD7, TD9, and TD10, shown in

Table 11.4 NYMEX listed dirty and clean tanker futures, 2007

Baltic NYMEX Sector Route Description Cargo  Type of Settlement
Routes Coding Size (mt) Contract Index

Panel A: Dirty Tanker Futures

TD3 TL VLCC Middle Eastern Gulf to 260000 Listed — Futures Baltic
Japan

TD5 TI Suezmax West Africa — USAC 130000 Listed — Futures Baltic

TD7 TK Aframax North Sea — Europe 80000 Listed — Futures Baltic

TD9 TN Panamax Caribbean to US Gulf 70000 Listed — Futures Baltic

TD10 TO Panamax Caribbean to USAC 50000 Listed — Futures Baltic

Panel B: Clean Tanker Futures

TCl1 TG LR 2 Ras Tanura to 75000 Listed — Futures Platts
Yokohama

TC2 ™ MR Europe to USAC 37000 Listed — Futures Baltic

TC4 TJ MR Singapore to Japan 30000 Listed — Futures Platts

TCS TH LR 1 Ras Tanura to 55000 Listed — Futures Platts
Yokohama

Source of data: NYMEX.

7 More information about NYMEX can be obtained at: www.nymex.com.
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panel A of the table, and the four “clean” tanker routes TC1, TC2, TC4, and TCS, presented
in panel B of the same table.

114 “HYBRID” (CLEARED) FFAs

In response to demands from market participants to address the issue of credit risk present
in OTC FFA contracts, a set of new derivatives contracts appeared. We call them “hybrid”
FFAs, as they are OTC agreements, but cleared through a clearing house. Thus they maintain
the flexibility of the FFAs and, for a fee, have credit risk eliminated through mark-to-market
clearing, as in freight futures. These “hybrid” FFAs are cleared in the London Clearing House
Clearnet (LCH.Clearnet) and in the Singapore Exchange AsiaClear (SGX AsiaClear).

11.4.1 Freight forwards at the London Clearing House Clearnet (LCH.Clearnet)

On 22 December 2003 the London Clearing House (LCH) Limited merged with Clearnet
S.A. to form the “LCH.Clearnet” Group. On 13 September 2005, LCH.Clearnet launched
a clearing and settlement platform for OTC FFAs. Potential members establish a relation-
ship with a LCH.Clearnet clearing member for the management of margin and cash-flows,
agreeing the commercial terms bilaterally, with the credit risk lying between the client and
the clearing member. Alternatively, potential members can sign up to LCH.Clearnet as a
clearing member.?

Table 11.5 presents the underlying indices upon which the freight forward contracts,
which are cleared at LCH.Clearnet, are based. They include six tanker FFAs (crude and
refined products), presented in panel A of the table; four dry-bulk voyage FFAs, presented
in panel B; three “baskets” of dry-bulk time-charter FFAs, shown in panel C; and two dry trip
time-charter FFAs, shown in panel D. In the tanker sector, forwards are written on the “dirty”
TD3, TDS5, TD7 routes and the “clean” TC2, TC4, TCS routes. In the dry-bulk sector, FFAs
are written on the Capesize voyage routes C3, C4, C5, and C7; on Capesize, Panamax, and
Supramax time-charter “baskets”; and on the Panamax time-charter P2A and P3A routes.
Moreover, LCH.Clearnet, during February 2008, launched three cleared freight options on
the Capesize (CTCO), Panamax (PTCO), and Supramax (STCO) time-charter baskets.

11.4.2 Freight forwards at the Singapore Exchange AsiaClear (SGX AsiaClear)

In May 2006, Singapore Exchange Limited (SGX) launched SGX AsiaClear, its OTC clear-
ing facility for energy and freight derivatives. In response to Asia’s OTC market needs,
SGX AsiaClear offers a network of Asia-based counterparties to facilitate OTC trading and
clearing activities, to enhance credit and risk management, and to increase OTC operations
and position-netting efficiencies. The SGX AsiaClear facility provides immediate 20-hour
central counterparty clearing for OTC FFAs. OTC market participants can conveniently use
their OTC Inter-Dealer Brokers (IDBs) to register trades electronically on the SGX Asia-
Clear Trade Registration System for clearing and netting, under accounts maintained with
SGX OTC Clearing Members. Clearing for the SGX AsiaClear facility is supported by the
Singapore Exchange Derivatives Clearing Limited.’

8 More information about LCH.Clearnet can be obtained at: www.lchclearnet.com.
9 More information about SGX AsiaClear can be obtained at: www.asiaclear.com.sg.
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Table 11.5 Listed forward contracts at LCH.Clearnet, 2007

Routes Sector Route Description Cargo Size (mt)

Panel A: Tanker Forwards

TD3 VLCC Middle Eastern Gulf to Japan 260000
TDS5 Suezmax West Africa — USAC 130000
TD7 Aframax North Sea — USAC 80000
TC2 MR Continent to USAC 37000
TC4 MR Singapore — Japan 30000
TCS LR 1 ME - Japan 55000

Panel B: Dry Voyage Forwards

C3 Capesize Tubarao/Beilun and Baoshan 150000
C4 Capesize Richard Bay/Rotterdam 150000
C5 Capesize West Australia/Beilun-Baoshan 150000
Cc7 Capesize Bolivar/Rotterdam 150000

Panel C: Dry Time-charter Basket Forwards

CTC Capesize Capesize 4 T/C routes Average -
PTC Panamax Panamax 4 T/C routes Average -
STC Supramax Supramax 5 T/C routes Average -

Panel D: Dry Trip Time-Charter Forwards

P2A Panamax Skaw — Gibraltar/Far East -
P3A Panamax Transpacific Round — Japan -

Source of data: LCH.Clearnet.

Table 11.6 presents the underlying indices upon which the FFA contracts of SGX Asia-
Clear are based. They include three tanker FFAs (crude and refined products), presented in
panel A of the table; four dry voyage FFAs (dry-bulk commodities) presented in panel B;
three “baskets” of dry time-charter FFAs, shown in panel C; and two dry trip time-charter
FFAs, shown in panel D. In the tanker sector, FFAs are written on the “dirty” TD3 route
and the “clean” TC4 and TCS routes. In the dry-bulk sector, FFAs are written on the Cape-
size voyage routes C3, C4, C5, and C7; on Capesize, Panamax, and Supramax time-charter
“baskets”; and on the Panamax time-charter P2A and P3A routes.

The development of allowing FFA contracts to be settled through a clearing-house in order
to eliminate credit risk, is in response to calls from the industry. Potential market participants
have always voiced their concern in relation to counterparty risk. These “hybrid” FFAs seem
to combine the best of futures and forwards into one contract. That is, counterparty risk is
removed and yet they retain their flexibility in terms of adjusting their terms according to
the needs of the counterparties.

11.5 FREIGHT OPTIONS

Freight options contracts are available OTC on individual routes of the dry and tanker Baltic
indices, as well as on baskets of time-charter routes, and are offered by the same derivatives
brokers that trade FFA contracts and specialist investment banks (e.g. Macquarie Bank).
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Table 11.6 Listed dirty and clean tanker forwards at SGX AsiaClear, 2007

Routes Sector Route Description Cargo Size (mt)

Panel A: Tanker Forwards

TD3 VLCC Middle Eastern Gulf to Japan 260000
TC4 MR Singapore to Japan 30000
TCS LR 1 Middle Eastern Gulf to Japan 55000

Panel B: Dry Voyage Forwards

C3 Capesize Tubarao/Beilun and Baoshan 150000
C4 Capesize Richard Bay/Rotterdam 150000
C5 Capesize West Australia/Beilun-Baoshan 150000
Cc7 Capesize Bolivar/Rotterdam 150000

Panel C: Dry Time-charter Basket Forwards

CTC Capesize Capesize 4 T/C routes Average -
PTC Panamax Panamax 4 T/C routes Average -
STC Supramax Supramax 5 T/C routes Average -

Panel D: Dry Trip Time-Charter Forwards

P2A Panamax Skaw — Gibraltar/Far East -
P3A Panamax Transpacific Round - Japan -

Source of data: SGX AsiaClear.

The Asian freight option contract is either a freight put option (floor) or a freight call option
(cap). They settle the difference between the average spot rate over a defined period of time
and an agreed strike price.!® A shipowner anticipating falling freight rates will buy a put
option, thus agreeing to sell his freight service in the future at a price agreed today. He
would exercise the option to sell at the agreed price if the market freight rate falls below
the agreed price, otherwise he will let the option expire worthless. On the other hand, a
charterer would buy a call option, which he will exercise (to buy the freight service at the
agreed price) if the market freight rate at expiry is higher than the agreed price. Both the
charterer and the shipowner would pay a premium to purchase these options. In contrast
to FFAs and freight futures, the downside cost is known in advance and is equal to the
option’s premium. The upside potential in a call option is unlimited, just as in the case
of FFAs and freight futures. A detailed analysis of the various basic and advanced freight
option strategies can be found in Kavussanos and Visvikis (2006a).

During 1 June 2005 the first cleared tanker IMAREX Freight Option (IFO) contract was
launched, on route TD3 (AG — East, VLCC 260,000mt), cleared through NOS. The IFOs are
available for trading and clearing for all IMAREX and NOS members and are structured
as monthly call and put Asian style options, with monthly, quarterly and yearly maturi-
ties. During 2007, IMAREX announced IFO contracts on the following tanker routes: TDS5
(West Africa — USAC), TD7 (North Sea — Continent), TC2 (Continent — USAC), TC4 (Sin-
gapore to Japan), and TC5 (AG - Japan) (see Panel A of Table 11.7). Moreover, dry-bulk

10 An Asian option is an option that is exercised against an average over a period of time. Asian options are often
used in thinly traded, volatile commodity markets to avoid problems with price manipulation of the underlying
commodity near or at maturity. Freight markets fall into this category.
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Table 11.7 IMAREX Asian Freight Options (IFO)

Routes Sector Route Description Cargo Size (mt)

Panel A: Tanker Asian IFOs

TD3 VLCC AG - East 260000
TD5 Suezmax  West Africa — USAC 130000
TD7 Aframax North Sea — Continent 80000
TC2 MR Continent — USAC 33000
TC4 MR Singapore — Japan 30000
TCS LR 1 AG - Japan 55000

Panel B: Dry-Bulk Asian IFOs

CS4TC Capesize  T/C Average -
PM4TC Panamax  T/C Average -
SM6TC Supramax T/C Average -
C4 AVG  Capesize  Richards Bay — Rotterdam 150000
C4 Capesize  Richards Bay — Rotterdam 150000

Source of data: IMAREX.

IFOs have been launched on Capesize, Panamax, and Supramax time-charter basket averages
and on Capesize route C4 (see Table 11.7, Panel B).

Tanker and dry-bulk IFOs are settled against the Baltic Exchange quotes (with the excep-
tion of routes TC4 and TCS, where Platts assessments are used). More specifically, settlement
prices for the tanker routes (measured in Worldscale points and 1 Lot = 1000mt), and the
dry-bulk time-charter routes (measured in US$/day and 1 Lot = 1 Day) are calculated as
the arithmetic average across all trading days in a calendar month and those for the dry-bulk
voyage routes (measured in US$/ton and 1 Lot = 1000mt) are calculated as the arithmetic
average of the spot prices over the number of Index days in the Delivery Period.

11.6 EMPIRICAL RESEARCH ON FREIGHT DERIVATIVES

Relatively limited research has been conducted on freight derivatives, in comparison with
derivatives on other “commodities”.!! Part of the reason for this situation has been the lack
of availability of data which could be used to support empirical work in these markets.
Until recently, research work had to rely on primary data collected from freight derivatives
brokers’ records, often meeting the reluctance of agents in the “secretive” shipping indus-
try to provide data and information for research. Currently, there are several derivatives
exchanges, which collect those data and, for a fee, can make them available to interested
parties.'?

1 Several empirical studies have examined the economic functions of the now redundant BIFFEX contract: Culli-
nane (1991, 1992) investigates the predictive power of short-term forecasts of the BFI by the use of the BIFFEX
contract; Chang and Chang (1996) examine the predictability of BIFFEX with respect to the dry-bulk shipping
market; Thuong and Visscher (1990), Haralambides (1992), Haigh and Holt (2002), and Kavussanos (2002) present
studies that have examined the risk management function, through hedging, of the BIFFEX contract; Tvedt (1998)
derives a pricing formula for European futures options in the BIFFEX market; Kavussanos and Nomikos (1999)
and Haigh (2000) examine the unbiasedness hypothesis in the BIFFEX market using cointegration techniques.

12 For an analytical survey of the recent empirical evidence that has appeared in economic studies relevant to
freight derivatives see Kavussanos and Visvikis (2006b).
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The success or failure of a derivatives contract is determined by its ability to perform its
economic functions efficiently and, therefore, to provide benefits to economic agents over
and above the benefits they derive from the spot market. Those economic functions that have
attracted much research interest are price discovery and risk management through hedging.
If the derivatives market does not perform one or both of these functions satisfactorily, then
market agents have no reason to trade in the derivatives market, which eventually leads to
loss of trading interest. Together with these important economic functions, research work
has appeared in the literature on issues which include: the impact of the introduction of the
FFA: markets on the volatility of the freight rates; the predictive power of freight derivatives
prices; the relationship between FFA bid-ask spreads and expected volatility; the forward
freight rate dynamics; the pricing of freight options; and the application of Value-at-Risk
(VaR) models for measuring freight market risk. These are presented in Section 11.6.1.

11.6.1 Price discovery in freight derivatives

Following Working (1960), price discovery refers to the use of one price series (e.g. deriva-
tives returns) for determining (predicting) another price series (e.g. spot returns). The
lead-lag relationship between the price movements of derivatives returns and the under-
lying spot market returns illustrates how fast one market reflects new information relative
to the other, and how well the two markets are linked.

A special feature of the freight derivatives market is that the underlying commodity is
a service, which cannot be stored. The theory governing the relationship between spot and
derivatives prices of continuously storable commodities is developed in Working (1960)
amongst others, while that of non-storable commodities is examined in studies such as
Eydeland and Geman (1998), Geman and Vasicek (2001), and Bessembinder and Lemmon
(2002) in the electricity derivatives markets. The non-storable nature of the FFA market
implies that spot and FFA prices are not linked by a cost-of-carry (storage) relationship,
as in financial and agricultural derivatives markets. Thus, futures/forward prices on freight
rates are driven by the expectations of market agents regarding the spot prices that will
prevail at the expiry of the contract.

For a storable commodity, it is argued that the price of a forward contract, written on the
commodity, must be equal to the spot price of the commodity today plus the financial and
other costs (e.g. storage and insurance) to carry it forward in time. If this is not the case
and the forward price is overpriced (underpriced), arbitrageurs/investors can simultaneously
sell (buy) the forward contract, buy (sell) the underlying commodity, and store it until the
expiry of the contract. At expiry, reversing these positions will produce a risk-free profit.
These movements by arbitrageurs ensure that correct prices always prevail in efficiently
working markets, and they will be:

Fir=S+Cr (11.1)

where, F; r = price of a forward contract at time ¢, maturing at time period T'; S; = spot
price of the underlying commodity in period ¢; and Cr-, = costs of carrying the commodity
forward in time between period ¢ and 7.

There are, however, a number of factors that may lead to a large deviation of spot
prices from derivatives prices, thus resulting in the existence of arbitrage opportunities.
For instance, arbitrage opportunities may arise due to the existence of regional supply and
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demand imbalances, regulatory changes, market distortions created by market participants
with large positions, etc. Therefore, the aforementioned relationship can be used to identify
the existence of arbitrage opportunities in the market.

Kavussanos (2002) and Kavussanos and Visvikis (2004, 2006b) point out that freight
services, as the underlying commodity of freight derivatives, are not storable. This violates
the usual arbitrage arguments, presented above, that lead to the pricing of futures and for-
ward contracts in storable commodities. In fact, in the above studies and in Kavussanos and
Visvikis (2006b) it is shown that in this case, pricing of FFA and freight futures contracts
takes the following form:

Fr =ESr)+u : u ~iid(0,¢?) (11.2)

where F, 7 is the FFA price formed at period ¢ for settlement at period T, E(S7) denotes
the expected value of the spot (underlying) freight asset at the settlement date, and u, is an
independent and identically distributed stochastic error-term with a mean value of zero and
variance o2. Provided the relationship is verified with actual data, it can be argued that the
freight forward/futures market satisfies its price discovery functions. This is because futures
or forward prices today can help discover spot prices in a future time period, specifically at
the expiry of the derivatives contract. Thus, the identification of risk-less arbitrage opportuni-
ties in non-storable commodities, and therefore market efficiency, becomes a research issue.

In the spot (physical) market, several studies have investigated if time-charter rates are
formed through expected spot rates, following the Expectations Hypothesis of the Term
Structure (EHTS). Kavussanos and Alizadeh (2002) test the EHTS in the formation of
time-charter rates and report rejection of the relationship, arguing that this is due to the
existence of time-varying risk premiums, which moreover vary with the duration of the
time-charter contract and with the vessel size. Adland and Cullinane (2005) reinforce these
findings and show that the risk premium also varies with the market conditions. Alizadeh
et al. (2007) examine if the implied forward 6-month time-charter rates in the dry-bulk
freight market, which are derived through the difference between time-charters with differ-
ent maturities based in the term structure model, are efficient and unbiased predictors of
actual future time-charter rates. They report that implied forward rates are indeed unbiased
predictors of future time-charter rates. However, despite the finding of unbiasedness, on
average, chartering strategies based on technical analysis are able to generate economic
profits.

Kavussanos et al. (2004) and Kavussanos and Visvikis (2004) investigate two different
aspects of the price discovery function of the FFA market, namely the relationship between
current forward prices and expected spot prices — embodied in the unbiasedness hypothe-
sis, and the lead-lag relationship in returns and volatility between spot and forward prices,
respectively. They examine the following constituent routes of the BPI: (a) the Atlantic voy-
age route P1 (US Gulf/Antwerp—Rotterdam—Amsterdam); (b) the Atlantic time-charter route
P1A (Transatlantic round to Skaw—Gibraltar range); (c) the Pacific voyage route P2 (US
Gulf/Japan); and (d) the Pacific time-charter route P2A (Skaw Passero—Gibraltar/Taiwan—
Japan).

11.6.1.1 The unbiasedness hypothesis

According to the unbiasedness hypothesis, derivatives (futures/forward) contract prices must
be unbiased estimators of spot prices of the underlying asset that will be realized at the
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expiration date of the contract. The existence of derivatives markets therefore can help
discover prices which are likely to prevail in the spot market. Theoretically, a forward
price is equivalent to the expected spot price at maturity, under the joint hypothesis of no
risk-premium and rational use of information. The relationship can be tested empirically
through the following equation:

S;=B1+B Fntu ; u ~iid0,0?) (11.3)

where F;;_, is the forward price at time t—n, for delivery at time ¢, S; is the spot price at
the maturity of the contract and u, is a white noise error process. Unbiasedness holds when
the following parameter restrictions (81, 82) = (0, 1) are valid.

Because most macroeconomic (time-series) variables are found to be non-stationary (they
have a unit root) use of Ordinary Least Squares (OLS) to estimate Eq. (11.3), result in
inconsistent coefficient estimates and - and F'-statistics which do not follow standard dis-
tributions. The following Vector Error-Correction Model (VECM) cointegration framework,
developed by Johansen (1988), is used instead to resolve the problem and reliably test for
unbiasedness:

p—1
AX, = p+ Z [AX, + X,y +u, 5 u ~INQ,X) (11.4)
i=1

where X, is the 2 x 1 vector (S;, F;,—,)’, i is a 2 x 1 vector of deterministic components
which may include a linear trend term, an intercept term, or both, A denotes the first differ-
ence operator, u, is a 2 x 1 vector of residuals (us,, ur;)’ and X the variance/covariance
matrix of the latter. The VECM specification contains information on both the short- and
long-run adjustment to changes in X,, via the estimates of I'; and I1, respectively.

In the FFA market, Kavussanos et al. (2004) report that parameter restriction tests on
the cointegrating relationship between spot and FFA prices indicate that FFA prices one
and two months prior to maturity are unbiased predictors of the realized spot prices in all
investigated routes. However, the efficiency of the FFA prices three months prior to maturity
gives mixed evidence, with routes P2 and P2A being unbiased estimators, and routes P1 and
P1A being biased estimators of the realized spot prices. Thus, it is argued that unbiasedness
depends on the market and type/length of contract under investigation. For the investigated
routes and maturities for which unbiasedness holds, market agents can use the FFA prices
as indicators of the future course of spot prices, in order to guide their physical market
decisions.

Ishizaka et al. (2007) examine several factors determining equilibrium spot and futures/
forward rates in shipping markets, assuming non-storability of freight rates. Based on the
work of Tezuka and Ishizaka (2006), they extend the Bessembinder and Lemmon (2002)
model to the freight market, which makes allowance for non-storability. In their study they
take an equilibrium approach to derive futures/forward rates, rather than the cost-of-carry
relationship. They construct a forward curve from wet-bulk sector (VLCC — AG/JP route)
data, and examine the unbiasedness hypothesis. They use the futures curve in order to see
if there are differences between the futures price and the expected value of the spot price at
the maturity date (existence of risk-premiums) when market structures and conditions differ.

To specify the demand process, they use a Markov Regime Switching process model and
assume a low demand situation and a high demand state. In their model it is assumed that
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the demand process can start either from a high or a low state and then change distribution
at certain probability. Regarding the distribution of demand, the results show that when
starting either from a high or a low state, it deviates from the state in which the process
is at time 0. After observing the futures curve and risk-premium curve (biasness), which
is the difference between the futures price and the expected value of the spot price at
the maturity, the results indicate biasedness in all market conditions. Starting from a high
demand state, futures curves tend to be upward sloping, but the risk-premium curves tend
to be decreasing. On the other hand, starting from a low demand state the slopes of futures
curves are downward, but the risk-premiums are upward. This may mean that in a high (low)
demand period, market participants believe that the present (future) period is more important
than future (present) periods and therefore, negative (positive) risk-premiums might exist
for the future. Thus, it is suggested that the degree of biasedness depends on the initial
demand conditions. Generally, in a high demand period, each participant values higher the
present compared to any future period, and vice versa.

11.6.1.2 The lead-lag relationship

Kavussanos and Visvikis (2004) investigate the second dimension of the price discovery
role of derivatives markets: that is, the lead-lag relationship between FFA and spot freight
markets, both in terms of returns and volatilities. By using a VECM model (similar to that
of Eq. (11.4)), to investigate the short-run dynamics and the price movements in the two
markets, causality tests and impulse response analysis indicate that there is a bi-directional
causal relationship between spot and FFA prices in all routes, implying that FFA prices can
be equally as important sources of information as spot prices. However, the results from
causality tests on the unrestricted VECM models suggest that causality from FFA (spot) to
spot (FFA) returns is stronger than in the other direction on routes P1 and P2A (on routes
P1A and P2).

The finding that FFA markets informationally lead the underlying spot markets may be
due to the fact that FFA trades are cash-settled deals, which require no chartering of vessel or
movement of cargo, and therefore have lower transactions costs than the underlying/physical
spot market. Furthermore, an investor can have an FFA contract on one or more of the
trading routes for several time intervals, providing him ease of shorting. In contrast to
FFA transactions that can be implemented immediately with no up-front cash, spot fixtures
require greater initial costs and take longer to be completed. Therefore, market agents react
to new information faster through the FFA market, in comparison to spot transactions. As
a consequence, spot prices will lag behind FFA prices.

In order to investigate for volatility spillovers between the spot and FFA markets, an
augmented bivariate VECM — Generalised Autoregressive Conditional Heteroskedasticity
(GARCH) model is utilized, with the following positive definite parameterization of the
variance-covariance matrix:

H, = A'A+ B/Hz_lB + C/8,_18;_1C + Sl’ul,t_lu’lyt_ISI
+ SZ’uz,,,lu’ZJ_lSZ + E/(thl)zE (11.5)

where A is a 2 x 2 lower triangular matrix of coefficients, B and C are 2 x 2 diagonal
coefficient matrices, with ﬂ,?k + y,?k < 1, k = 1,2 for stationarity, S1 and S2 are matrices
which contain parameters of spillover effects, u; ;1 and uy;—; are matrices whose elements
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are lagged square error-terms (u; ,—j represents the volatility spillover effect from the spot to
the derivatives market and u, ;_; represents the volatility spillover effect from the derivatives
to the spot market), (z,—1)?* is the lagged squared basis, and E is a 1 x 2 vector of coefficients
of the lagged squared basis. In this diagonal representation, the conditional variances are a
function of their own lagged values (old news), their own lagged error terms (new news),
volatility spillover parameters, and a lagged squared basis parameter, while the conditional
covariance is a function of lagged covariances and lagged cross products of the ¢,’s.

The results indicate that the FFA market volatility spills information to the spot market
volatility in route P1. In route P1A the results indicate no volatility spillovers in either
market. In routes P2 and P2A there is a bi-directional relationship as each market transmits
volatility to the other. The previous results, in routes P1 and P2A, indicate that informed par-
ticipants are not indifferent between trading in the FFA or in the spot market, as new market
information is disseminated in the FFA market before the spot market. Thus, it seems that
FFA prices for those routes contain useful information about subsequent spot prices, beyond
that already embedded in the current spot price, and therefore can be used as price discovery
vehicles, since such information may be used in decision-making. More specifically, market
participants who have collected and analyzed new information regarding the expected level
of spot and FFA prices in routes P1 and P2A, will prefer to trade in the forward market than
in the spot market. Furthermore, the FFA contracts for routes P1, P2, and P2A contribute
to the volatility of the relevant spot rate, and therefore further support the notion of price
discovery. By explicitly modelling conditional variance dynamics, practitioners can have a
clearer understanding of the price interactions in the spot and FFA markets. This can lead
to a better assessment of risk management, ship-chartering, and budget planning decisions.

11.6.2 Hedging effectiveness of freight derivatives

Derivatives markets exist in order to provide instruments for businesses to reduce or control
the unwanted risk of price change by transferring it to others more willing to bear the
risk. This function of derivatives markets is performed through hedging the spot position
by holding an opposite position in the derivatives market. Kavussanos and Visvikis (2005)
investigate the risk management function of the FFA market by examining the effectiveness
of time-varying hedge ratios in reducing freight rate risk in the four aforementioned routes
of the BPI. Comparison between the effectiveness of different hedge ratios is made by
constructing portfolios implied by the computed ratios each week and then comparing the
variance of the returns of these constructed (hedged) portfolios over the sample.

According to Johnson (1960) and Ederington (1979), the hedge ratio that minimizes the
risk of the spot position is given by the ratio of the covariance (measuring co-movement)
between spot and derivatives price changes over the variance (measuring volatility) of
derivatives price changes. The ratio is known as the Minimum Variance Hedge Ratio
(MVHR). The MVHR methodology postulates that the objective of hedging is to mini-
mize the variance of the returns in the hedge portfolio held by the investor. Therefore, the
hedge ratio that generates the minimum portfolio variance should be the optimal hedge ratio.
This is equivalent to the slope coefficient, #*, in the following regression:

AS, = ho + h*AF, + &,; &, ~ iid(0, 0%) (11.6)

where AS, = S, — S;_; is the logarithmic change in the spot position between —1 and ¢;
AF, = F, — F,_ is the logarithmic change in the FFA position between r—1 and ¢, and h*
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is the optimal hedge ratio. The degree of variance reduction in the hedged portfolio achieved
through hedging is given by the coefficient of determination (R?) of the regression, since it
represents the proportion of risk in the spot market that is eliminated through hedging; the
higher the R? the greater the effectiveness of the minimum variance hedge.

To account for the simultaneous estimation of spot and FFA prices and to allow for
the time variation in A*, VECM-GARCH are used in in- and out-of-sample tests. They
indicate that, in voyage routes P1 and P2, the relationship between spot and FFA prices is
quite stable and market agents can use simple first-difference regression models in order to
obtain optimum hedge ratios. In contrast, on time-charter routes P1A and P2A, it seems that
the arrival of new information affects the relationship between spot and FFA prices, and
therefore time-varying hedging models should be preferred. Also the hedging effectiveness
varies from one freight market to the other. This is because freight prices, and consequently
FFA quotes, are affected by different regional economic conditions. Market agents can
benefit from this result by developing appropriate hedge ratios for each route, and thus
controlling their freight rate risk more effectively.

11.6.3 The impact of freight derivatives trading on spot market price volatility

Derivatives markets can be seen to be enhancing economic welfare by allowing for new
positions, expanding investment sets, providing instruments for reducing risks and enabling
existing positions to be taken at lower costs. However, the issue of whether derivatives
trading increases or reduces volatility in the spot market has been the subject of considerable
empirical analysis and has received the attention of policymakers.

Kavussanos et al. (2004) investigate the impact of FFA trading on spot market price
volatility of the four aforementioned routes of the BPI, by employing a GARCH model
modified along the lines of the GJR-GARCH model of Glosten ef al. (1993). This allows
for the asymmetric impact of news (positive or negative) on volatility. Thus, the mean
equation of the GJR-GARCH process is defined as follows:

p—1
AS; =go+ Y ¢iAS,i+& ; & ~INOh) (11.7)

i=1

where S, is the natural logarithm of the daily spot price change, A is the first-difference
operator and ¢, is the regression error-term, which follows a conditional normal distribution
with mean zero and time-varying covariance, h,. The conditional variance of the process is
specified as follows:

h, = ag +ajh_y + Bie’, + yie? D, , (11.8)

where D,_| is a dummy variable that takes the value of unity if the error is negative
(sf_ol) and zero otherwise. When the coefficient of D,_, is zero (i.e. y; = 0), the model
of Eq. (11.8) is the symmetric GARCH model. A negative shock (D,_; = 1) can generate
an asymmetric response on volatility, in comparison to a positive shock. When y; > 0
(y1 < 0), the model produces a larger (smaller) response for a negative shock compared
to a positive shock of equal magnitude. A priori one expects a positive sign for the y
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coefficient, as there is evidence in the literature which shows that bad news has a larger
impact on price volatility than good news.

The impact of the onset of FFA trading is examined in two ways. First, the model
of Eq. (11.8) is estimated for the period before and after the onset of FFA trading and
the estimated coefficients in the two models are compared. Thus, the asymmetry of the
relationship between information and volatility before and after the onset of FFA trading
may be inferred through the value of the estimated coefficient y| before and after FFAs.
Secondly, in order to examine how the onset of FFA trading has affected volatility, a dummy
variable (D) is introduced (with a coefficient ;) in the variance equation representing the
time period before and after FFA trading. A significant positive y, coefficient indicates
increased unconditional spot price volatility in the post-FFA period, whereas a significant
negative y, coefficient indicates decreased unconditional spot price volatility in the post-FFA
period.

The results suggest that the onset of FFA trading has (i) reduced the spot price volatility
of all investigated routes; (ii) a decreasing impact on the asymmetry of volatility (market
dynamics) in routes P2 and P2A; and (iii) substantially improved the quality and speed of
information flow for routes P1, P1A, and P2. These findings have several implications for
the way in which the FFA market is viewed. It appears that there has been an improvement
in the way that news is transmitted into prices following the onset of FFA trading. It is
argued that by attracting more, and possibly better informed, participants into the market,
FFA trading has assisted the incorporation of information into spot prices more quickly.
Thus, even those market agents who do not directly use the FFA market have benefited
from the introduction of FFA trading.

11.6.4 The predictive power of freight derivatives

Batchelor et al. (2007) test the performance of several time-series models (multivariate Vec-
tor Autoregressive — VAR; VECM; Seemingly Unrelated Regressions Estimation — SURE-
VECM; and univariate Autoregressive Integrated Moving Average — ARIMA) in predicting
spot and FFA rates on P1, P1A, P2, and P2A freight routes of the BPL

Univariate ARIMA (p, d, g) models of the following form are used to generate forecasts
of spot and FFA prices:

P q
AS; =m0+ Y miiASii+ Y yijFj+en i e, ~iid0.0)  (11.92)

i=1 j=I

P q
AF =pa0+ Y 12ildS—i+Y vajiFij+e i &,~iid(0,03)  (11.9b)
i=1 j=1

where AF,; and AS, are changes (first-differences) in log FFA and spot prices respectively,
and & k = 1,2, is a white noise random error-term. For an ARIMA (p, d, g) model the
terms p, d, g refer to the lagged values of the dependent variable, the order of integration
and the lagged values of the error-term respectively, in the specification of the model.
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The bivariate VAR(p) model of the following form is also used to produce forecasts of
spot and FFA prices in a simultaneous spot-FFA framework:

P q
AS = po+ Y miiASi+ Y vijFij+en (11.10)

i=1 j=1

14 q
AF, = a0+ Y 1aidSi+ Y vajFij+e 3 ey ~iid(0,07)
i—1 =1

Finally, the unrestricted and restricted versions of the bivariate VECM(p) model of the
following form is used to generate simultaneous out-of-sample forecasts for spot and FFA
prices:

p q
AS; =0+ Y miASi—i +Y v jFioj+ (S — BiFioy — fo) + a1, (1111)
i=1 j=1

P q
AF, = poo+ Y tm2iASici+ Y yajFj + aa(Simi — BiFi1 — Bo) + e2,
i=1 j=1

8i,t|Qt—1 ~ IN(0, H)

where the term in brackets represents the cointegrating (long-run) relationship between the
spot and FFA prices. The error-terms follow a normal distribution with mean zero and
covariance matrix, H.

Independent non-overlapping forecast sets are created by generating N -period ahead mul-
tiple forecasts, from recursively estimated model parameters. The results indicate that while
conditioning spot returns on lagged FFA returns generates more accurate forecasts of spot
prices for all forecast horizons (up to 20 days ahead), conditioning FFA returns on lagged
spot returns enhances forecast accuracy only up to four days ahead. For longer forecast
horizons, simple univariate ARIMA models seem to be the best models for forecasting FFA
prices. Thus, FFA prices can enhance the forecasting performance of spot prices and, con-
sequently, by selecting the appropriate time-series model for forecasting purposes, market
participants can design more efficient investment and speculative trading strategies.

On the other hand, it seems that spot prices cannot help in enhancing the forecasting
performance of FFA prices, which indicates that the forward rate does contain significantly
more and different (and maybe better) information than is embodied in the current spot rate.
The implication of this is that even if market participants do not use the FFA market for
hedging reasons, by collecting and analyzing FFA prices they can obtain “free” information
about the future direction of spot freight prices.

11.6.5 Microstructure effects in freight derivatives markets

Transactions costs are an important consideration in investors’ investment decisions. One
such significant cost is the Bid-Ask Spread (BAS). Brokers match buy and sell con-
tracts and the price charged for this service is known as the BAS; that is, the difference
between the buying (bid) and selling (asked) price per contract. This normally is regarded
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as compensation to brokers for providing liquidity services in a continuously traded market.
There should be a positive relationship between the BAS and price volatility on the grounds
that the greater the variability in price, the greater the risk associated with performance
of the function of the brokers. Intuitively, unambiguous good or bad news regarding the
fundamentals of the price of the asset should have no systematic effect on the spread. How-
ever, greater uncertainty regarding the future price of the asset, as associated with greater
volatility of the price of the asset, is likely to result in a widening of the spread.
Batchelor er al. (2005) examine the relationship between expected volatility and bid-ask
spreads in the FFA market using the four aforementioned routes of the BPI. In order to derive
an estimate of the FFA volatility, the following AR(p)-GARCH(1,1) model is employed:

p—1
AF, = g0+ ) @iAFii+e 5 & ~iidO,h) ; b =ag+ah_ +pier, (1112)

i=1

where F', is the natural logarithm of FFA prices (average mid-point of the bid-ask quotes),
A is the first-difference operator, and ¢, is a white noise error-term with mean zero and
time-varying variance, h;.

One-step ahead conditional volatility estimates (h,; ), derived from the above model are
used to analyze the relationship between expected volatility and current BAS,. Specifically,
the BASs are regressed against variables that represent risk, information and a lagged BAS,
as in the following equation:

BAS, = By + Bihy41 + BBAS,_1 + B3AF, +u, ; u, ~ iid(0, hy) (11.13)

where risk is captured by the one-step ahead conditional volatility (h,;) from a GARCH(1,1)
model, information effects are accounted for by the logarithmic first-difference of the FFA
price series (AF;) and BAS, is defined as the difference of the natural logarithm of the
ask quote minus the natural logarithm of the bid quote [In(Ask,;) — In(Bid,)]. The model is
estimated via the Generalized Method of Moments (GMM), thus avoiding any simultaneity
bias and yielding heteroskedasticity and autocorrelation consistent estimates.

The results indicate that there is a positive relationship between bid-ask spreads and
expected price volatility for routes P1, P2, and P2A. In contrast, on route P1A there is
no significant relationship between bid-ask spreads and expected volatility. This finding
may be explained by the thin trading of FFA contracts for the latter route. The results can
provide a better understanding of the movements of FFA prices, and the consequent effect on
transactions costs. Market participants using information on the behaviour of bid-ask spreads
have a better insight into the timing of their FFA transactions and the future direction of
the FFA market, as a widening bid-ask spread corresponds to an anticipation of increased
future volatility.

11.6.6 Market surveys on the use of freight derivatives

Dinwoodie and Morris (2003) survey the attitudes of tanker shipowners and charterers
towards freight hedging and their risk perceptions of FFAs. The survey includes question-
naire replies from seven countries over 22 shipowners and eight charterers. They argue that
although FFAs were widely viewed as an important development, some respondents were
unaware of their function and the majority had not used them. Most of the participants
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in this survey were concerned about the risk of payment default on settlement. Many
shipowners also feared that FFAs might expose their risk management policies to coun-
terparties. The link between freight hedging activity and participants’ risk aversion was not
clear-cut, but they argue that improved “technical” education is essential for widespread
acceptance.

Kavussanos et al. (2007) explore the importance of hedging through a questionnaire
survey of 31 Greek shipping counterparties. The general attitudes and common perceptions
of the use of shipping derivatives by Greek shipowners involved in both dry-bulk and
tanker trades are investigated. The results indicate that: (i) risk management and shipping
derivatives are at an early stage of development and understanding in the Greek shipping
market, although participants in the sample seem to know about them; (ii) the traditional
ways of thinking must be changed and replaced with modern risk management concepts,
which should form part of the overall business strategy of the company; (iii) liquidity
and credit (counterparty) risk are considered to be major obstacles in the use of shipping
derivatives; (iv) in line with the findings of Dinwoodie and Morris (2003), they consider
education to be of paramount importance for them; and finally, (v) there seems to be a
positive view of the future of shipping derivatives in Greece, especially if the banks endorse
them.

11.6.7 Forward freight rate dynamics

Koekebakker and Adland (2004) investigate the forward freight rate dynamics by modelling
them under a term-structure model. They transform time-charter rates into average based
forward freight rates. They then assume that there exists a continuous forward freight rate
function that correctly prices the average based forward freight rate contracts. For their
analysis, they use time-charter rates for a Panamax 65000 dwt vessel under three different
time-charter maturities: six months, one year, and three years. These data are then used
to construct, each day, a forward rate function using a smoothing algorithm in order to
investigate the factors governing the dynamics of the forward freight rate curve. Results
indicate that the volatility of the forward curve is bumped, with volatility reaching a peak
for freight rates with roughly one year to maturity. Moreover, correlations between different
parts of the term-structure are in general low and even negative. They conclude that these
results are not found in other markets. Such a forward freight rate model provides a tool to
perform freight rate derivatives valuation and hedging.

Adland et al. (2007) investigate the volatility structure of the forward freight rate function
in the route-specific tanker freight futures market using IMAREX quarterly and calendar year
freight futures contracts. They argue that knowledge of the volatility structure is important
when pricing freight options and when measuring the market risk inherent in the freight
derivatives portfolio. The framework of Heath, Jarrow, and Morton (HIM, 1992) is followed
for modeling the continuous forward freight rate function that provides the price today
for freight at any given point of time in the future. This is derived empirically using a
smoothing algorithm for each trading day in the sample. They report a volatility structure
that is increasing over a horizon of several weeks and then sharply declining in the time to
maturity of the contracts. It is suggested that this is a reflection of the expected short-term
positive autocorrelation and long-run mean reversion of tanker spot freight rates. It is further
reported that while the volatility of short-term forward freight rates is increasing in the
vessel size, the annualized volatility of forward freight rates across sizes is converging, at a
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maturity of around one year. However, the authors argue that the empirical results must be
interpreted with caution, as the freight futures market in general remains illiquid compared
to other commodity markets.

11.6.8 Pricing of freight options

Tvedt (1998) estimates an analytical formula for pricing European futures options on BIF-
FEX. The following assumptions are made: Due to the possible lay-up of vessels, the
underlying index of BIFFEX, namely the BFI, is never close to zero. Therefore, it is assumed
that the BFI, and also the futures price process, are restricted downwards by an absorbing
level, which is above zero. Further, it is assumed that freight rates are mean reverting, due
to frictional capacity adjustments to changes in the demand for shipping services. These
properties influence the valuation of options contracts on BIFFEX.

Let A be an absorbing level for the BFI process that would be the lay-up level for
vessels. Assuming that the BFI less the absorbing level X is log-normally distributed, then
the increment of the index is given by the following mean reversion process:

dX, = k[a — In(X; — M)]X, — Md; + o (X, — 2)dZ, (11.14)

where X, is the index value (BFI) at time ¢, dZ, is the increment of a standard Brownian
motion, and k, a and o are constants. Generally, the futures price at time ¢ (®,) is the
expected value at time ¢ of the spot price at the time of settlement 7. Following Black
(1976), in the case of no risk-premium from investing in the futures market, it is argued
that the futures price process is given by the expectation of the spot process at the time of
settlement. Therefore, the futures price process is given by:

do, = e T g (@, — 1)dZ, (11.15)
where the weight e *7~9 determines the degree by which the volatility in the spot rate (the
BFI) is transferred over to the futures price process. Tvedt (1998) argues that since BFI is an
index of prices of shipping services, and since a service cannot be stored, the cost-of-carry
argument does not apply. Consequently, he argues that mean reversion in prices can prevail
without being smoothed out by storage and can be explained without referring to changes
in inventory costs.

The present value of a European call option on a BIFFEX futures at time ¢ is given by
the expectation of the value of the option at settlement date (Cr):

Cr = T E[(®, — ¥)xa] (11.16)

where r is a constant risk-free interest rate, x o is the indicator function of the event A
(that is, the option is only exercised when it is favourable for the option holder) and v is
the strike price. Calculating Eq. (11.16), using traditional arbitrage arguments and assuming
no transactions costs or taxes, the value of a European option on a futures contract in the
BIFFEX market was derived as:

Cr = e "I 9[(®, — MN(d)) — (¥ — A)N(do)] (11.17)
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where,

Y2 Y2

e *T-Dg. /T —1t e kT-Dg /T —t

Koekebakker ef al. (2007) propose a mathematical framework for Asian freight options
modeling, which is an extension of the framework put forward in Black (1976). Under this
theoretical framework, the spot freight rate at time ¢, which is a non-traded asset, is denoted
S(t). A future arithmetic average of S consists of N fixings at time points 71 < T < ...
< T'n. An FFA contract with a price F (¢, T|, T y) can be interpreted as the price set today at
time ¢ to deliver at time 7'y the value of the arithmetic average of the underlying spot freight
rate during the period [T';, T y]. Moreover, an FFA is a cash-settled contract that gives the
difference between this average and the price F(z, Ty, Ty) multiplied by a constant D.'3
They show that the value of an FFA can be found by discounting this cash-flow received at
time 7' and taking the conditional expectation under the pricing measure Q. Rearranging
and solving for the FFA price, it is simply the expected average spot price under the pricing
measure:

. In (<I>z—)\.> + [1/2 e—Zk(T—t)o'z(T — t)] 4 = In (‘E—X) — [1/26_2k(T—t)0-2(T -]

1 N
Ft, T, Ty) = NZEtQ[S(Ti)]. (11.18)
i=1

It is argued that FFAs are lognormal prior to the settlement period, but this lognormality
breaks down in the settlement period. They suggest an approximate dynamics structure in
the settlement period for the FFA, leading to closed-form option pricing formulas for Asian
call and put options written on the spot freight rate indices. Using Eq. (11.18), the payoff
of a call Asian option with strike price K and maturity T < T is derived as:

+
. N
D[NES(T»—K} = D[F(T, Ty, Ty) — K] (11.19)
and for a put
1 & i
b [K N ; S(Ti)] = DK — F(T,T1, Tw)I". (11.20)

Given that freight options relate to periods that are non-overlapping multiples of the monthly
settlement period, they are caps and floors. Thus, the price at time t < Ty for a call option
is derived as:

Ct,Ty) = e "IWNDDF(t, Ty, Ty) N(dy) — K N(d»)) (11.21)

n((FOT 0 )2 | |
where d| = — dr» = dy—oF, and N (x) is the standard cumulative normal

distribution function.

13 The constant D refers to the number of calendar days covered by the FFA contract or an agreed cargo size for
time-charter routes and voyage route, respectively.
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For the put option, the put-call parity for futures contracts combined with the symmetry
property of the normal distribution is used to derive:

P, Ty) = e "IN"DD(K N(=dy) — F(t, Ty, Ty) N(—d))). (11.22)

The authors conclude that other stochastic specifications of the spot freight rate process
may be more appropriate. For instance, extensions of this work should incorporate the
term-structure of volatility that exists due to mean reversion in the spot freight rate process
and the possible existence of seasonal volatility.

11.6.9 Measuring freight market risk

An important question in the sector is when to utilize derivative products to hedge freight
rate risks. To that effect, Kavussanos and Dimitrakopoulos (2007) introduce and formalize
a market risk measurement and management framework for the shipping business. Two
alternative risk metrics are proposed: Value-at-Risk (VaR) and Expected Shortfall (ES).
VaR is a single, summary, statistical number that expresses the maximum expected loss
over a given time horizon, at a certain confidence interval and for a given position or
portfolio of instruments, under normal market conditions.

Defining the continuously compounded return of an asset as r, = In(P,/P,—1) for the
period from ¢#—1 to ¢ and letting r, follow the stochastic process r; = u; + z; o; (where,
u; = E(r,) is the conditional mean and a,z is the conditional variance) VaR denotes the
maximum loss over a predefined investment horizon (e.g. one day), that can be sustained
at a certain confidence level (1 — «). Mathematically:

F(VaR/ () = P(r, < VaR) ) = a. (11.23)
VaR has been criticized for its inability to quantify and express the loss beyond the VaR
level and for not being a coherent risk metric.

The ES is defined as the expected value of the loss beyond the VaR level (shortfall),
under the condition that a shortfall occurs and fulfils the coherency conditions required for
risk metrics:

ES = E,(r;|r; < VaR.q). (11.24)

Kavussanos and Dimitrakopoulos (2007) provide an evaluation assessment of alternative
VaR and ES forecasting models for short- and medium-term freight risk exposures for the
tanker shipping sector. More specifically, freight market risk exposures corresponding to ves-
sel portfolios, employed to routes of the Baltic Clean Tanker Index (BCTI) and Baltic Dirty
Tanker Index (BDTI) or to single vessels employed in individual routes are considered.'* The
alternative modeling approaches include: variance modeling approaches (such as the random
walk, the GARCH, and exponentially weighted moving average specifications); simulation
based approaches (such as the historical simulation, the exponential historical simulation,

14 Individual routes used include: TD3 (Middle East Gulf to Japan, for vessel sizes of 250000 dwt), TD5 (West
Africa to USAC, for vessel sizes of 130000 dwt), TD7 (North Sea to Continent, for vessel sizes of 80000 dwt),
and TD9 (Caribbean to US Gulf, for vessel sizes of 70 000 dwt.
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the filtered historical simulation and Monte Carlo);'> and semi-parametric approaches (such
as the extreme value methods).!® Each of the alternative VaR specifications is evaluated in
terms of statistical accuracy (or statistical sufficiency in the concept of interval forecast eval-
uation) and regulatory performance (regulatory loss functions, penalizing large deviations
of VaR and ES values from realized losses, are used).

The results indicate that unhedged positions in routes TD3 and TD9 are found to be
more risky than positions in the other markets examined (TDS5 and TD7). The comparative
analysis of the alternative VaR and ES forecasting models indicates that the GARCH and
the Historical or the Filtered Historical Simulation approaches perform best for forecasting
short-term (daily) risk. On the other hand, the most reliable method for estimating long-term
risk exposures is the empirically scaled historical simulation model. Thus, it is suggested
that both the VaR and the ES risk metrics, if employed correctly, may contribute to an
effective management of freight risk.

Besides the aforementioned study, two other empirical studies try to measure freight
market risk with the use of the VaR methodology. Angelidis and Skiadopoulos (2007) apply
several parametric and non-parametric VaR methods in dry-bulk (Baltic Dry Index, the
4 Time-Charter Average BPI and the 4 Time-Charter Average BCI) and wet-bulk (Dirty
Tanker TD3 route) markets. They argue that the simplest non-parametric methods can be
used to measure freight market risk and that the freight rate risk is greater in the wet-bulk
market. Lu et al. (2007), using index data from the dry-bulk market (BCI, BPI, and BHMI),
find the General Error Distribution (GED) Exponential E-GARCH-VaR model to be able to
efficiently measure market risk.

11.7 CONCLUSION

This chapter presented how freight derivative instruments, such as futures, forwards and
options, can be used to hedge freight rate risks in the dry- and wet-bulk sectors of the
shipping industry. It started by presenting the underlying indices of freight rate deriva-
tives, which are constructed by the Baltic Exchange. These indices and their constituent
routes provide the underlying commodities for freight rate derivatives to be written upon.
Then exchange-traded, OTC and cleared-OTC freight derivatives were analyzed. It can be
argued that freight derivatives can provide the flexibility that traditional methods of risk
management are not able to provide to shipping companies.

Furthermore, the economics underlying the freight derivatives markets and the empirical
research evidence related to them have been outlined. In general, it has been shown that:
(i) freight derivatives contracts serve their price discovery function well, as FFA prices are
unbiased predictors of future spot rates and FFA markets informationally lead, in terms
of returns and volatilities, the underlying spot markets; (ii) FFA contracts serve their risk

5 In the non-parametric historical simulation, the next period’s returns are well approximated by the empirical
distribution of the last m-observations. In the exponential historical simulation, heavier weights are assigned
to more recent observations in the available historical m-observation data window. In the filtered historical
simulation, GARCH modelling is combined with the historical simulation method. In the Monte Carlo simulation,
GARCH modelling is combined with simulation of standardized pseudo-random normal variables that are used in
conjunction with volatility forecasts in order to generate price paths.

16 According to the extreme value method of filtered peaks over threshold, a generalized Pareto distribution is
fitted to excesses over a high threshold of standardized residuals by means of a maximum likelihood technique in
order to obtain quantile estimators.
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management function through hedging; (iii) the existence of freight derivatives markets
have reduced spot market volatility and the informational asymmetries in the spot market;
(iv) market participants, by collecting and analyzing FFA prices, can obtain “free” informa-
tion about the future direction of spot freight prices, as FFA prices can assist in forecasting
spot prices; (v) VaR and ES methods can be utilized to provide meaningful and accurate
risk forecasts, leading to consistent and effective management of freight risk; and (vi) the
volatility structure of the forward freight rate function in the freight futures market and
pricing formulas for freight options have been examined. Obviously, there is a lot more
work that can be carried out in our effort to understand better the fundamentals of freight
derivatives markets. However, this chapter can form a basis upon which further work in the
area can develop.
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12
Mean-Reversion and Structural Breaks in

Crude Oil, Copper, and Shipping

Hélyette Geman and Steve Ohana

12.1 INTRODUCTION

Commodity prices have been rising at an unprecedented pace over the last seven years. As
depicted in Fig. 12.2, an investment of $100 made in January 2002 in the global Dow Jones
AIG Commodity Index had more than doubled by July 2006 while Fig. 12.3 indicates that
these $100 invested in the Dow Jones AIG Energy sub-index had turned into $500 in July
2005.

The increase of prices in the last three years has been even more dramatic, with a huge
demand coming from China, India, and developing countries. In the case of commodities
like copper and crude oil, the issue of exhaustibility and depleting reserves is certainly one
element that contributes to the irresistible ascension of prices displayed in Fig. 12.3. As far
as shipping is concerned, the explosion of international trade in iron ore, coal and cereals
has greatly outpaced the capacity of shipyards and translated into large spikes in freight
indexes such as the Baltic Dry Index described in Section 12.2.

The financial literature on commodity price modeling started with the pioneer paper
of Gibson and Schwartz (1990), dedicated to the valuation of options on oil. In the spirit
of the Black-Scholes-Merton (1973) model, they chose a geometric Brownian motion for
the crude oil price process. Given the behavior of commodity prices during the 1990s
depicted in Fig. 12.1, Schwartz (1997) decided to turn to a mean-reverting process for oil
prices. Since then, mean-reversion (with or without jumps) has been a central property in
the financial literature dedicated to commodity price modeling (e.g. Eydeland and Geman
(1998), Miltersen and Schwartz (1998), Geman and Nguyen (2005)).

Unit root testing of commodity prices is quite common: Ardeni (1989) tests for the
unit roots in the import/export prices of wheat, wood, beef, sugar, tea, and zinc for four
countries, using Augmented-Dickey-Fuller (hereafter ADF) tests with quarterly observations.
Babula et al. (1995) find that the log corn prices in the US are integrated of order one.
Foster et al. (1995) could not reject the null of a unit root for the weekly cattle prices at
seven locations. Newbold et al. (2000) find mixed evidence on the stationarity of deflated
wheat and maize prices in the US. Koekebakker et al. (2006) analyze the stationarity of
freight prices by employing a non-linear version of the ADF (based on an exponentially
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smooth-transition autoregressive model) and conclude that dry-bulk freight prices are non-
linear stationary. Geman and Ohana (2007) analyze the relations between forward curves
slopes and inventories in the US natural gas and crude oil markets: by applying ADF and
Phillips-Perron (hereafter PP) tests to the two energy commodities, they reject the null of a
unit root for the slopes and inventory deviations to the ‘normal’ case.

The last 20 years have seen the inclusion of structural breaks in the testing of stationarity.
A pioneering piece of work in this respect was that of Perron (1989), which points out the
importance of including break points when testing for unit root in macroeconomic time
series on a time-horizon of several decades. In particular, he shows that standard unit root
tests (ADF and PP) fail to reject the null hypothesis of unit root if the true data generating
mechanism is that of stationary fluctuations around a trend with a single break taking place
at a known point in time (e.g. the Great Depression or the first crude oil price shock). The
reason is that a break is then wrongly interpreted as a permanent shock emanating from
the noise component instead of being attributed to a shift in the trend term. He proposed a
new unit root test that allows for the presence of a one-time change in the level and slope
of the trend function in both the null and the alternative hypotheses. Another test was later
on suggested by Zivot and Andrews (1992), to allow for an unknown breaking time; the
drawback of this approach is that the existence of a break is only assumed in the alternative
hypothesis, not the null of a unit root, which makes the test too sensitive to the break
parameters. Lee and Strazicich (2003) propose a Lagrange multiplier test with two unknown
break times, and very recently Carrion-i-Silvestre et al. (2007) suggested the use of a GLS-
based unit root test with multiple break times, occurring at unknown times. A comprehensive
survey on structural breaks in the analysis of time series can be found in Perron (2006).

Few papers have, to our knowledge, applied unit root tests with structural breaks to
commodity prices. Serletis (1992) performs unit root tests on crude oil, heating oil, and
unleaded gas futures prices in the US, comparing the standard ADF test with the test with
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a break point in level and drift proposed by Zivot and Andrews (1992): his finding is that
only the latter test allows one to reject the null of a unit root. Recently, Tomek and Wang
(2007) performed a series of different unit root tests (ADF, PP, test in Perron (1990) with
one structural change in mean and slope) to the prices of corn, soybeans, barrows and
gilts, and milk from 1960 to 2002. They find that, if the test specification does not account
for a structural change that shifts the mean of the variable, the results are biased towards
concluding that a unit root exists.

The goal of this chapter is to revisit the issue of mean-reversion for three strategic
commodities which are making the daily headlines of the actuality, namely crude oil, copper,
and shipping. The length of the period chosen is long enough to cover the quiet period of
the 1990s and the bull commodity markets of the 2000s. It also allows us to test more subtle
forms of mean-reversion such as the possibility of breaks in the trend function as introduced
in Perron (1989).

The last seven years have been the stage of major transformations for commodity mar-
kets — Chinese growth, geopolitical turmoil in oil producing countries, and the massive rise
in speculation activity being some of the most well-known factors. As could be expected,
we find that the three prices series under analysis were affected by a structural change in
2001 and 2002, with essentially a change in drift for copper and a change in both drift and
level for the West Texas Intermediate (hereafter WTI) and the freight. Using the GLS-based
unit root test described in Carrion-i-Silvestre et al. (2007), we find that when the trend is
subject to one break point under the null and alternative hypothesis, the hypothesis of an
integrated noise component can be rejected against the alternative of stationary fluctuations
at the 5 % level for the WTI, and at the 10 % level for copper and the shipping index. The
same test with two break points allowed us to reject the null of a unit root for the WTI and
the freight at the 10 % level, but not for copper. By contrast, none of the standard unit root
tests allowed us to reject the null of a unit root, except on the sub-periods Jan. 1983—Jan.
1986 and Feb. 1986—Mar. 2003 in the case of the WTIL.

The rest of this chapter is organized as follows. Section 12.2 presents the fundamental
qualitative features of crude oil, copper, and shipping. Section 12.3 proposes alternative
definitions of mean-reversion. Section 12.4 describes the database, the econometric tests
and the results. Section 12.5 contains concluding comments.

12.2 FUNDAMENTALS OF COPPER, CRUDE OIL,
AND SHIPPING

12.2.1 Crude oil

Crude oil, also called petroleum, and the most fascinating commodity, was formed million
years ago by the remains of dead plants that inhabited the sea and transformed over time
into crude oil and natural gas, among other elements. Crude oil is found today, in most
cases together with natural gas, in the upper layers of the earth’s crust.

Crude oil is made up of hydrocarbons, molecules comprising both hydrogen and carbon
atoms, possibly in various configurations. The number of carbon atoms in crude oil deter-
mines the amount of CO, emissions that will be produced when oil is burnt. There are over
130 grades of crude oil around the world, differing also by the sulfur content and gravity.
The highest quality crudes are those with a low sulfur content and high specific gravity. On
this basis, the US West Texas Intermediate (WTI) and the Malaysian Tapis represent the
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highest quality of crude oil. The heavier, sour crudes from the United Arab Emirates and
Mexico are of a poorer quality and, consequently, trade at a discount to WTL

Both the density and distillation curve of a specific crude oil are important to refiners
who separate, at higher and higher temperatures, the different components of the crude to
make various products like gasoline, heating oil, naphtha, diesel, and jet fuel. The owners
of refineries, who today can be veterans of the oil industry as well as private equity funds,
have learnt to optimize the “crackspreads” in order to manufacture high value oil distillates
depending on the market conditions at different points in the world.

Saudi Arabia is the largest producer (13 % of the world production, i.e. around 11 million
barrels (bbls) per day) and exporter of crude oil; the largest reserves are in Saudi Arabia,
Canada,! Tran and Iraq. On the demand side, the top oil consuming regions are the US,
with a consumption of more than 20.8 million bbls per day; then come Europe, China, and
Japan respectively consuming 15.2, 7.3, and 5.2 million bbls every day. The transportation
and industrial sectors account for the main part of the world oil consumption.

The most common way to produce crude oil is to identify an oil field, then use drilling
rigs to create an oil well from which crude oil is extracted. Commercial drilling of oil
started in 1859 in Titusville, Pennsylvania. Advances in technology have played a key
role in the improvement of oil production. In particular, the recent method of “horizon-
tal drilling” — drilling first vertically into the oil field, then moving horizontally into the
reservoir — have represented major steps forward, in particular in the case of older oil wells.

Crude oil prices have exhibited high volatility for a long time. Much of it started in 1973
with the Arab oil embargo which stopped shipments of crude oil to the United States.

The second oil crisis of the 1970s occurred in 1979 during the revolution in Iran when
changes in the political regime caused a decline the country’s oil production and exports.
Another price increase occurred during the years 1990—1991 with Iraq’s invasion of Kuwait,
creating uncertainty around oil production and exports from both countries. Regarding the
downward moves, large price declines occurred when Saudi Arabia noticeably increased
production in 1986, then during the Asian crisis of 1997-1999, and again during a short
period after 11 September 2001, reflecting concerns about the US and world economy.
Figure 12.4(a) shows the impact of these events on the WTI first nearby future price.

But the most remarkable element is the large and steady (except for the year 2006) price
increase that started in 2002—2003 and took crude prices at levels approaching $120/bbl in
April 2008. This spectacular rise can be explained by several causes:

a weakening dollar;

a growth in global oil demand, especially from countries such as China, South Korea,

India, and Brazil which have regularly pushed prices up over the last few years;

e a greater world awareness that oil reserves may eventually be depleted (as discussed by
Matthew Simmons in his book, Twilight in the Desert, 2005) and oil become the first
fossil commodity to reach its “peak’;

e a significant political uncertainty in oil-producing countries such as Nigeria, Venezuela,
Iran and Iraq;

e dramatic weather events such as Hurricane Katrina that in summer 2005 destroyed a

number of oil platforms in the Gulf of Mexico; an important one belonging to the oil

major BP.

! Canadian reserves are subject to great uncertainty due to the difficulty of estimating the level of oil sand reserves.
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Figure 12.4(a) Monthly spot prices of WTI

The US Energy Department recently revised its projections and expects crude oil prices to
average $101/bbl in 2008, on the view of expected global demand growth and low sur-
plus production capacity. The Energy Information Administration had previously forecast
that the average for the benchmark WTI crude oil would be $94/bbl. The revision comes
as crude prices have spiked over the last two months (at the time of writing), hitting a
trading high of $120/bbl, with more money being poured into crude oil futures and ETFs.
“The combination of rising world oil consumption and low surplus production capacity is
putting upward pressure on oil prices”, the EIA said in a monthly report on petroleum
supply and demand. While high prices are damping demand in the US, petroleum consump-
tion remains strong in China, India, Russia, and the Middle East, the EIA said. Demand
growth in 2008 is now expected at almost 1.3 million bbl/day, i.e., 1.5 % higher than in
2007.

Global oil supply fell by 100000 bbl/day in March 2008, led by lower supplies from
OPEC, the North Sea and non-OPEC African countries. Non-OPEC supply growth in 2008
is trimmed, according to experts, to 815000 bbl/day on a broad swathe of adjustments in
the Americas, Africa and Europe. OPEC crude supply fell during the first quarter of 2008
on field maintenance in the Emirates, Nigeria and Venezuela. Pipeline and power outages
highlighted the risks to production in Iraq and Nigeria, amid an effective spare capacity of
just 2.3 million bbl/day.

12.2.2 Copper

Copper is a reddish-colored metal, malleable and with excellent electrical conductivity.
During the Roman Empire, copper was principally mined in Cyprus, hence the origin of its
other name as cuprum. The Egyptians found that adding a small amount of tin made the
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metal easier to cast, leading to the discovery of bronze. The use of bronze, a much harder
material with a very low melting point, during the years 2000 BC to 600 BC became so
extensive in Europe that this period was named the Bronze Age. Copper has been used as
a waterproof roofing material since ancient times, giving many old buildings their greenish
roofs and domes. Copper carbonate is highly resistant to corrosion: the Statue of Liberty, for
instance, contains more than 81 tons of copper. The use of copper in electronic equipments
is gigantic: copper wire, electromagnets, electrical relays and switches, cathode ray tubes,
and integrated circuits (where it is increasingly replacing aluminum because of its superior
electrical conductivity).

Copper is one of the few metals to appear naturally as an uncompounded mineral, in
large open mines that contain 0.4 to 1.0 % of copper. The copper ore dug from the mines
is crushed and ground, then skimmed from the top of a water bath. The result is copper
concentrate at 20—40 % purity. In order to go into a greater purity, the concentrate copper
is smelted to yield a 60—80 % concentrate liquid, in turn heated in the presence of air to
produce “blister copper” which is 97—-99 % pure. The final procedure is an electrolysis that
brings copper deposits at the cathode, with a purity greater than 99.9 %. This grade A copper
is the one that trades on the London Metal Exchange (LME) and other major exchanges
such as the Shanghai Futures Exchange (SHFE). As is the case for many metals today,
recycling plays an important role in copper production, accounting for 10—15 % of total
refined copper produced worldwide.

According to the British Geological Survey, Chile is currently the top mine producer
of copper, with more than one third of the world’s production, through its state-owned
company Cameco. Then come the US, Indonesia, Peru, Australia, and China which each
contribute 5—8 % of the world’s mined copper. In the US, copper is mined in Utah, Nevada,
Tennessee and Michigan. Until recently, South America, Australia and Indonesia were the
major exporters of concentrate copper, with most of their copper being refined elsewhere.
This is currently changing, with mergers and acquisitions leading to mining giants such as
BHP Billiton or Rio Tinto which deploy within the firm the whole spectrum of production
and refinery activities. Chile and China are the most important refiners and China’s produc-
tion has almost offset the decline in the US. Physical assets such as smelters are now owned
worldwide not only by mining companies, but also private equity or hedge funds that are
prepared to act as traders by tracking possible arbitrage opportunities between spot prices
and refining charges. The price volatility results from physical supply — demand imbalances,
as well as political news from copper producing countries or electricity outages such as in
South Africa recently.

There are an estimated 61 years of remaining copper reserves, but this number may
decrease if the current increase in consumption, more than 3 % since 1995, remains
unchanged. After the European Union, China has become the second user of refined copper
and accounts for more than 50 % of the increase in consumption since 1995.

Looking at the trajectory depicted in Fig. 12.4(b), we see that copper prices were at $1.320
per ton in June 1999, rose to $8.270 in May 2006 to drop to $5.290 in February 2007 (all
these numbers illustrating a very high volatility of prices), rebounded to $7.710 in April
2007 to be again at the time of writing (March 2008) above $8000 per ton. According to
the Wall Street Journal of 31 March 2008 the year-to-date performance of capital invested
in commodities by major pension funds like Calper’s was 27.7 % in the case of copper and
10 % in the case of oil, both numbers being very high compared to the current returns in
the stock and bond markets.
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Figure 12.4(b) Monthly spot prices of copper on the London Metal Exchange

12.2.3 Shipping

The expansion of commodity markets during the years 2000 and the double-digit growth
of the developing countries have contributed to an amazing boom in maritime transport
and shipbuilding. Demand exploded in 2007, with more than 300 million deadweighttons
of new orders (4900 ships) placed. This compares with 94 million in 2005 and 169 million
in 2006. The fleet under construction reached 55 % of the active fleet against 23 % a year
earlier. In fact, 2007 was the fifth consecutive astonishing year for the maritime industry.
All records have been shattered in the dry bulk market and the crude oil market, with
an unprecedented interest in bulk carriers. The order book at the end of 2007 was close
to 530 million deadweighttons (dwt), nearly five times the level of 2000. Annual world
production has now reached about 90 million dwt (2300 ships) compared to 55 million in
2003 and 75 million in 2006. In certain ship categories, the tonnage on order is equal to,
or even in excess of, the fleet in service. Moreover, the quick rise in bunker prices has
persuaded operators to reduce speeds, which in turn requires the addition of more vessels to
maintain the same schedules. Lastly, queues at Panama Canal or some harbors in Australia
are getting longer and more frequent; for instance, the transit time to get through the Canal
of Panama often goes as high as 53 hours when the regular time is 27 to 30 hours.

Korea maintained its ranking as the number one shipbuilder in the world in 2007. The
country’s orderbook increased by 60 % during the year, up to 134 million gigatons. China
followed closely, with a portfolio that more than doubled in 2007 to 104 million gigatons
(gt). Japanese shipbuilding has also progressed with a portfolio of nearly 71 million gt (up
from 62 million gt). The orderbook of the European builders remained stable at around
24 million gt.

Exceptional demand, a rise in construction and bunker costs, a depreciating dollar and an
exuberant freight market, in particular for dry bulk, have pushed prices of new vessels to
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Figure 12.4(c) Monthly Baltic Dry Index

historic levels and generated spikes in freight indexes, in particular the Baltic Dry Index,
the industry main indicator.

The Baltic Dry Index (BDI) is an index covering dry bulk shipping rates and managed
by the Baltic Exchange in London. According to the documents published by the Baltic
Exchange, the BDI provides “an assessment of the price of moving the major raw materials
by sea”. Taking into account 26 shipping routes measured on a time charter and voyage
basis, the index covers Supramax, Panamax, and Capesize dry bulk carriers transporting a
range of commodities including coal, iron ore and grain.

The index is made up of an average of the corresponding Supramax, Panamax, and
Capesize indices. Each index is based on professional estimations made by a panel of
international shipbroking companies. Since the cost of shipping varies with the amount of
cargo that is shipped and dry bulk represents goods like iron ore, coal, or cement, the index
is also seen as a good indicator of economic growth for countries like China, India, Korea.

As exhibited in Fig. 12.4(c), the BDI has experienced large spikes over the recent period
of booming commodity markets. Within a 12-month period, it went from a level of 4400
points to a high of roughly 11000 points in mid-November 2007 and is currently (April
2008) at the level of 9250 points, evidence of a very high volatility related to sporadic
supply and demand imbalances in the shipping markets.

12.3 DEFINING MEAN-REVERSION

We will start this section by reviewing how mean-reversion has been defined in the financial
literature dedicated to the subject in the case of commodities and in the recent period.
One perspective is the one adopted by Bessembinder et al. (1995). The authors study 11
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different commodity markets and, rather than examining time series of asset prices, use
futures contracts with various maturities to test whether investors expect prices to revert.
They assume that the “Rational Expectations Hypothesis” holds, namely that futures prices
are unbiased expectations (under the real probability measure) of spot prices in the future.
Hence, the slope of the forward curve — defined as a distant maturity future price minus
the first nearby price — should be negatively related to spot prices in the case of mean
reversion: when spot prices are high, they are expected to decline and the forward curve
should be backwardated (declining). Conversely, it should be in contango in the case of
low spot prices. Using this definition of mean reversion, Bessembinder et al. conclude that
it does prevail in all 11 commodity markets they study over the period 1982 to December
1991 (a finding consistent with Fig. 12.1). They also exhibit that the magnitude of mean-
reversion was large for agricultural commodities and crude oil, and substantially less for
metals. Obviously, their conclusions need to be revisited for the decade of the 1990s and,
even more so, the last seven years.

Regarding the financial literature dedicated to commodity price modeling, mean-reversion
has been essentially translated by the nature of the drift in the stochastic differential equation
driving the spot price dynamics. For instance, X, = In(S;) is supposed to be driven by an
Orstein-Uhlenbeck process

where (W) is a standard Brownian motion on a probability space (2, F, P), describing
the randomness of the economy. Equations similar to Eq. (12.1) can be found in Schwartz
(1997), Eydeland and Geman (1998), Miltersen and Schwartz (1998), and many other papers
using mean-reverting processes.

Koekebakker et al. (2006) relax the assumption of linear dependence between price
returns dX,; and log price X, and test a model that triggers mean-reversion only when
the price hits certain thresholds. Geman (2007) suggests going beyond the mere use of a
stochastic differential equation to discuss spot prices and proposes to characterize mean-
reversion by the existence of a finite invariant measure for the price process (only assumed
to be a Markov process), a property that has the merit of ensuring stationarity.

When the prices exhibit a long-term drift as was the case for crude oil, copper, and
freight over the last 20 years, it becomes appropriate to define mean-reversion as station-
ary fluctuations around a varying trend. For example, Pindyck (1999) analyzes 127 years
(1870-1996) of data on crude oil and bituminous coal obtained from the US Department
of Commerce. Using a unit root test, he shows that prices mean revert to stochastically
fluctuating trend lines that represent long term marginal costs of the commodities but are
unobservable and estimated using the Kalman filter. From an econometric perspective (the
one we will adopt in this paper), the log price of a commodity y, is written under the
following general discrete-time form:

Ve =d; +u
12.2
Uy = oUy—1 + vy ( )
In Eq. (12.2), v; is a moving average term v, = E;?‘;O(Sje,,j, where (e;) is a sequence of
independent and identically distributed (but not necessarily normal) variables.
We therefore model y, as the sum of a trend d; and a noise component u,.
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Unit-root tests are designed to discriminate whether u, is integrated of order one (¢ = 1)
(or mean-reverting (a¢ < 1).

In the simplest versions of unit-root tests (Augmented-Dickey-Fuller and Phillips-Perron
tests), the trend reduces to a linear function of time:

d; = po + Bot

In more recent unit-root tests, like the one introduced in Perron (1989) and later gener-
alized in Carrion-i-Silvestre et al. (2007), the trend d; is assumed to be a linear function of
time subject to a sequence of m shifts in level and drift occurring at times 71, 15, ..., Ty,
ie.,

d; = po + Bot + w1 DUL(Ty) + i DT () + - - - + pw DU(Th) + B DT, (T,)  (12.3)

where DU, (T;) and DT;(T;) respectively correspond to breaks in level and drift at time
T;:

DU(T;) = 1if t > T; and O otherwise
DT/ (T;) =t—T; if t > T; and 0 otherwise.

If m = 0, then the trend simply reduces to:

d; = po + Pot.

12.4 DATASET AND UNIT ROOT TESTS
12.4.1 Dataset

e For crude oil, our dataset consists of the monthly WTI spot prices (in US dollars per
barrel) from January 1983 to April 2008.

e Regarding copper, we use monthly copper spot prices (in US dollars per ton) on the
London Metal Exchange from July 1993 to April 2008.

e Finally, the dataset for shipping is composed of the monthly Baltic Dry Index from May
1985 to April 2008 downloaded from Datastream.

The three corresponding time series are plotted in Fig. 12.4.
All the analysis that follows will be performed on the price logarithms, rather than the
original prices, that are depicted in Fig. 12.5.

12.4.2 First estimate of the break dates

Bai and Perron (2003) provide a simple methodology to position structural breaks for weakly
stationary time series. As a first analysis, we apply here their methodology to the clearly
non-stationary log prices of WTI, copper, and shipping.

The method consists in performing an OLS regression of y, on the set of variables
(t, DU,(T)), DT} (Ty)) for varying Ty, and selecting the break time 7} which minimizes the
sum of squared residuals. Then, the same method is applied on the two subsets [1; 77] and
[T} + 1; T'], yielding two potential break points T < T; and 75 > Tj.
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Figure 12.5 Left: fit of the log price with one break point; Right: fit of the log price with two break
points; Top: WTI, Middle: Copper, Bottom: Baltic Dry Index
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Table 12.1 Estimation of T1 and T2 for the WTI, copper, and the
Baltic Dry Index. The star indicates the dominant break date, i.e.,
the first date detected in the break detection procedure described

in the text

WTI Copper BDI
Ist break date Jan 1986 Sep 2002* Jan 1988
2nd break date Jan 1998%* Mar 2006 Aug 2003*

T, is selected among T, and 75" as the one which minimizes the sum of squared residuals
in the OLS regression of y, on (¢, DU,(Ty), DT;*(T), DU(T>), DT;*(T»)). Ty and T, are
then relabeled so that 71 < T». T3, ..., T,, are defined in a similar manner.

In the rest of this chapter, we will assume that either one or two break points occurred
in the WTI, copper, and shipping prices.

Figure 12.5 and Table 12.1 present the results obtained for the WTI, copper, and the
Baltic Dry Index with m = 1 and 2. Some of the detected breaking points correspond to
well-identified macroeconomic events affecting the worldwide supply and demand of crude
oil, copper, and freight.

The first WTI breaking point (Jan 1986) corresponds to a change in Saudi Arabia quota
policy. From 1982 to 1985, Saudi Arabia acted as the swing producer cutting its production
in an attempt to cut the free fall in prices. In August 1985, the Saudis became tired of this
role and by early 1986 increased production from two to five million barrels per day. As a
consequence, crude oil prices plummeted below $10 per barrel by mid-1986.

The second break date for the WTI (Feb 1998) is certainly due to the Asian crisis and
the increase in Iraqi oil exports consecutive to the oil-for-food program. In 1998, Asian
Pacific oil consumption declined for the first time since 1982. The combination of lower
consumption and higher OPEC production sent prices in a downward spiral. As regards the
freight rates, the second break point (Aug 2003) is largely the product of the Chinese growth
which started accelerating in 2003: the tight and inelastic supply of cargo could hardly meet
the increased demand for freight resulting from the massive exports of raw materials (iron
ore, coal, and agriculturals alike) to China. As a consequence, the Baltic Dry Index more
than doubled within a few months.

12.4.3 ADF and PP unit-root tests

The Augmented-Dickey-Fuller test (with a constant and a trend) tests the null that « =0
against the alternative that ¢ < 0 in the following model:

k

Ay, =p+ Bt +oay—1 + Z5iAYt—i + &
i=1

The statistics of the test is the t-stat of the coefficient « in the OLS regression of Ay, on
Gy 1, Ay 1, ooy Ay g

The choice of the truncation lag parameter k is known to have important effects on the
size and power of the test (see e.g., Hall (1994)); here, as in Tomek and Williams (2007),
we choose k as the minimal lag such that we obtain white noise residuals ¢, while the last
lag is statistically significant.
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Table 12.2 Results of the ADF tests on the whole period

WTI Copper Baltic Dry Index
k | 1 |
o —0.0228 —0.00789 —0.029
t-stat —1.930 —0.759 —2.253
Critical value 1%, 5%, 10 % —3.96, =341, -3.12

k is the truncation lag parameter, o the regression coefficient on y,_; and t-stat the statistic of
the test

*Indicates rejection of the null of a unit root at the 10 % level

**Indicates rejection of the null of a unit root at the 5 % level

***Indicates rejection of the null of a unit root at the 1% level

Table 12.3 Results of the ADF tests on each sub-period

WTI Copper Baltic Dry Index
Period I t-stat —4.329**  —2.393 —1.885
Period II t-stat —4.234%*  —2.807 —2.469
Period IIT t-stat —2.373 —2.435 —2.087
Period I+II t-stat —3.754** —0.167 —2.708
Period IT+III t-stat —1.858 —2.609 —2.098

Only the t-stat of the test is reported

*Indicates rejection of the null of a unit root at the 10 % level
**Indicates rejection of the null of a unit root at the 5 % level
**Indicates rejection of the null of a unit root at the 1% level

The 1%, 5 %, and 10 % critical values of the test are provided in McKinnon (1991).

Therefore we cannot reject the null of a unit root at the 10 % level for any of the three
series. We now perform the ADF test on the three sub-periods: ¢ € [1; 71] (denoted period
I), t € [T) + 1; T;] (denoted period II), and # € [T, + 1; T] (denoted period III), where T
and T, are the break dates determined previously.

Even though the t-stats rise in absolute value compared to the ones displayed in Table 12.2,
the null of a unit root is only rejected for the WTI in periods I and II and in periods I + II.
Note the important decrease in the t-stat when calculated in period I+ II for copper and
in period II 4 III for the WTI. This demonstrates the importance of the structural breaks
occurring in Jan. 1998 for the WTI and in Sept. 2002 for copper.

The Phillips-Perron (1988) test (including a time trend) consists in testing the null of
p = 1 against p < 1 in the following model:

Yr =+ Bt + pyi—1 + &

The PP t-statistic is the t-stat of parameter p — 1 in the OLS regression of y, on t and
v;—1, adjusted for the serial correlation in the residuals &;.

The PP test was performed on the whole data set and on each sub-sample separately,
yielding the results presented in Table 12.4.

Hence, the null of a unit root can only be rejected at the 10 % level for the WTI in periods
Il and T+ 1L
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Table 12.4 Results of the PP tests on the whole period and on each sub-period

WTI Copper Baltic Dry Index

Whole period t-stat —1.6048 —0.5845 —1.8247
Period I t-stat —2.013 —2.2898 —1.7843
Period II t-stat —3.2925* —2.0909 —2.2074
Period III t-stat —2.3676 —2.5299 —1.7932
Period I+II t-stat —3.1415* 0.0439 —2.3632
Period II+III t-stat —1.5585 —2.2136 —1.6474
Critical value 1%, 5%, 10 % —4.00, —3.42, —3.14

Only the t-stat of the test is reported

*Indicates rejection of the null of a unit root at the 10 % level
**Indicates rejection of the null of a unit root at the 5 % level
***Indicates rejection of the null of a unit root at the 1% level

12.4.4 Extended ADF regressions with one and two structural breaks

An alternative way to test for a unit root is inspired from Zivot and Andrews (1992) and
Tomek and Wang (2007). It consists, in the spirit of the ADF test, in testing the significance
of the coefficient « in the model:

k
Ay, = Ady +a(y—1 —dy) + Z(S,-Ay,,,- + &
i=1

where d; is a linear trend with one or two level and slope shifts occurring at times T1 and
T2. This is done by computing the t-statistics of the coefficient « in the following OLS
regression:

Ayr = po + Pot + Z[Hi li=t;+1 + Bi DU(Ty) + yi DT, (T})]

i=1

k
tayii+ ) SiAy i +e (12.4)

i=1

with m = 1 or m = 2 and where the break dates T1 and T2 have been determined previously.

Because the limiting distribution for the t-stat of « in regression (12.4) under the null
hypothesis that &« = 1 in the model (12.2) is in general unknown, the results in Tables 12.5
and 12.6 should not be viewed as a formal rejection of the null of a unit root, but instead
as a qualitative indication of the relevance of the inclusion of structural breaks in the ADF
regression. Observe in particular the rise in the t-stat compared with the constant trend ADF
regressions of Table 12.2.

12.4.5 The GLS-based unit-root test with one and two structural breaks

We finally apply the tests recently proposed by Carrion-i-Silvestre et al. (2007), who adapt
the test originally proposed by Elliott ef al. (1996) to the situation of a trend including an
arbitrary (but supposedly known) number m of level and drift break points.
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Table 12.5 ADF regressions with the dominant structural break on the whole period

WTI Copper Baltic Dry Index
k 1 | 1
o —0.0967**  —0.0914*** —0.0698***
t-stat —4.446 —3.412 —3.751
Critical value 1%, 5%, 10% —2.58, —1.95, —1.62

k is the truncation lag parameter, « the regression coefficient on y;_; and t-stat the t-statistic of «
Note: the limiting distribution of the t-stat is not specified under the null of a unit root with
one break point; the critical values correspond here to the 0.5 %, 2.5 %, and 5 % quantiles of the
normal distribution

*Indicates significance at the 10 % level

**Indicates significance at the 5 % level

***Indicates significance at the 1% level

Table 12.6 ADF regressions with two structural breaks on the whole period

WTI Copper Baltic Dry Index
k 1 1 1
o —0.131%*  —0.104*** —0.0867***
t-stat —5.015 —3.648 —3.844
Critical value 1 %, 5%, 10 % —2.58, —1.95, —1.62

k is the truncation lag parameter, « the regression coefficient on y,_; and t-stat the t-statistic
of «

Note: the limiting distribution of the t-stat is not specified under the null of a unit root with
two break points; the critical values correspond here to the 0.5 %, 2.5 %, and 5 % quantiles of
the normal distribution

*Indicates significance at the 10 % level

**Indicates significance at the 5% level

***Indicates significance at the 1% level

We consider a time series y,;, t = 1,2, .., T, assumed to follow a model of the type (12.2),
where Ty, T», ..., T,,, are known break dates.

We want to test the null of @ = 1 against the alternative that « = o in model (12.2),
where « is a parameter defined below.

We introduce, for t = 2, ..., T, the quasi-differenced variables y* = y, — @y, and z%¥ =
7r — @z, with z, = (1, ¢, DU(Ty), DT/ (T1), DU((T3), DT} (T2)).

I; Tn

Foreeer B , we call

Introducing the break fraction vector A =

T
S@. ) =min }_OF =¥z’
t=2

the sum of squared residuals of the OLS regression of y* on z%.
The statistics of the test is then constructed as follows:

S@,2) —as(1, 1)
s2(1)

P () =
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The quantity s%(A) is estimated via:

2

2 Ssk
A)= ———
SO =020
T
1 _
s =k 23 o

k
b(1) =Y _b,
j=1

where b; and é;x are obtained from the OLS estimation of

k
Aj’z = boﬁtfl + Z biAytfi + er

i=1

and y; = y; — ¥'z;, where ¥ is the vector of regression coefficients from the OLS regression
of y¥ on z%. As in Carrion-i-Silvestre ez al. (2007), we choose the lag parameter k which
minimizes the modified Akaike information criterion introduced in Ng and Perron (2001).

Following Elliott ef al. (1996) we introduce @ =1+ ¢/ T, where ¢ is a non-centrality
parameter, chosen such that the asymptotic power of the test is 50 %. In the case of a model
with structural breaks, ¢ depends on the position of the break points; a general functional
form depending on X is provided in Carrion-i-Silvestre et al. (2007), who also provide a
functional form depending on X to compute the 1 %, 5 %, and 10 % quantiles of the limiting
distribution of Pf LS()) under the null hypothesis.

The interest of the above approach is that the convergence of PTG LS(3) still holds when
the breaking points Ty, T», ..., T,, are derived from the data instead of being known a
priori.

In this case, the statistics of the test is replaced by:

PEES (L) = min PELS ()
AEA
where A is the set of break fraction vectors such that Ay > ¢, X, > ¢, and Vi > 1, Aj41 —
A; = &; € is a trimming parameter that dictates the minimum length of a segment (a standard
choice in applications being ¢ = 0.15).

The estimated break fractions A converge to the actual break fractions A faster than
1/T. Note that the non-centrality parameter ¢ and the limiting distribution of PTG LS (%) now
depend on the estimated breaking points A

A crucial property is that the convergence of the test does not depend on the magnitude
of the shifts. However, the size and power of the test do depend on whether the number
of break points m correspond to the actual number of structural shifts present in the data.
For example, Nelson et al. (2001) have shown that unit root tests with single breaks have
difficulties distinguishing between a I(0) process with Markov-switching breaks from a
I(1) process. This is likely due to the fact that the Markov-switching trend breaks add a
unit root to the otherwise I(0) process; hence unit root tests with the wrong number of
breaks are ill-equipped to distinguish whether permanent shocks in a process are coming
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from innovations at each period or infrequent shocks to the trend function. Also, Carrion-i-
Silvestre et al. (2007) report size distortions when the unit root test with m = 1 is applied
to a data generating process presenting no break points.

Therefore, selecting the appropriate m is an important task that should be performed
before testing for unit roots. The recent paper of Perron and Yabu (2007) provides a rigorous
framework to test the null of no break points against the alternative of m break points in
a model of type (12.2). An essential feature of this test is that it works whether the noise
component is stationary or integrated of order one. To our knowledge, no procedure exists
to test the null of m break points against the alternative of m+1 break points in the model
2).

Testing for the existence and number of break points is beyond the scope of this chapter
and we instead conduct the GLS-based test successively with m = 1 and m = 2 for the three
time series. The results of the test are displayed in Tables 12.7 and 12.8. For comparison,
the results of the GLS-based tests with only a constant linear time trend (whose critical
values are found in Ng and Perron 2001) are presented in Table 12.9.

For the WTI crude oil, the dominant break points estimated by the GLS-based unit root
test (i.e. Mar 2002 for the one-break test and Jan 2002 for the two-breaks test) differ sig-
nificantly from the one estimated by minimization of the sum of squared residuals (i.e. Jan
1998). The interpretation of 2002 as a turning point in the oil markets is natural. In the

Table 12.7 Results of the GLS-based test on the WTI, copper, and dry-bulk freight rates with one
structural break at an unknown time

WTI Copper Baltic Dry Index
Statistic of the test P_gls 3.34%xx 5.72% 5.95%
Estimated T Mar 2002 Oct 2002 Sep 2002
Date T recalled from Table 12.1 Jan 1998 Sep 2002 Aug 2003
Critical value 1%,5 %, 10 % 4.80, 5.75, 6.23 4.74, 5.65, 6.42 4.80, 5.74, 6.24

P_gls is the statistic of the test, T1 the estimated break date

*Indicates rejection of the null of a unit root at the 10 % level
**Indicates rejection of the null of a unit root at the 5 % level
**Indicates rejection of the null of a unit root at the 1% level

Table 12.8 Results of the GLS-based test on the WTI, copper, and dry-bulk freight rates with two
structural breaks at unknown times

WTI Copper Baltic Dry Index
Statistics of the test P_gls 4.57* 12.25 4.03*
Estimated T Mar 1986 Oct 2002 Feb 1988
Date T recalled from Table 12.1 Jan 1986 Sep 2002 Jan 1988
Estimated 7> Jan 2002 Mar 2006 Aug 2002
Date T, recalled from Table 12.1 Jan 1998 Mar 2006 Aug 2003
Critical value 1%,5 %, 10 % 0.074, 3.96, 5.73 4.6, 6.55, 8.51 —0.046, 3.88, 5.65

P_gls is the statistics of the test, T1 and T2 the estimated break dates
*Indicates rejection of the null of a unit root at the 10 % level
**Indicates rejection of the null of a unit root at the 5 % level
**Indicates rejection of the null of a unit root at the 1% level
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Table 12.9 Results of the GLS-based test with only a constant linear time trend
on the WTI, copper and dry-bulk freight rates

WTI Copper Baltic Dry Index

Statistic of the test P_gls 13.22 55.49 15.80
Critical value 1 %,5 %, 10 % 4.03, 5.48, 6.67

P_gls is the statistics of the test

*Indicates rejection of the null of a unit root at the 10 % level
**Indicates rejection of the null of a unit root at the 5% level
***Indicates rejection of the null of a unit root at the 1% level

wake of the 11 September 2001 attack, crude oil prices plummeted. Spot prices for the
WTI were down 35 % by the middle of November. Under normal circumstances a drop
in price of this magnitude would have resulted in another round of quota reductions but,
given the world political climate, OPEC delayed additional cuts until January 2002. It then
reduced its quota by 1.5 million barrels per day and was joined by several non-OPEC pro-
ducers, including Russia, who promised combined production cuts of an additional 462 500
barrels. This had the desired effect since oil prices moved into the $25 range by March
2002. The continuous rise of oil prices from 2002 onwards is due to a combination of fac-
tors, including the massive increase in Asian demand for oil, the uninterrupted geopolitical
turmoil in oil-producing countries (Middle East, Venezuela, and Nigeria in particular), the
declining reserve numbers reported by oil majors and the decreasing value of dollar over
the period.

Also, note the distance between the newly and previously calibrated dominant breaking
points for the Baltic Dry Index.

The three commodities under analysis appear to have experienced a major structural
change in 2002, the break point in copper following the WTI crude oil and freight index
ones. Figures 12.6 and 12.7 illustrate the new fits of the WTI and the Baltic Dry Index to
the shifting trend.

The null of an integrated noise component around a trend with one break point is rejected
at the 1% level for the WTI and at the 10 % level for the Baltic Dry Index and copper.
Interestingly, the null of an integrated noise component around a trend with two break
points is rejected at the 10 % level for the WTI crude and the Baltic Dry Index but not for
copper. By contrast, the null of an integrated noise around a constant linear trend cannot
be rejected at the 10 % level for any time series. These results show the importance of
the specification of the nature of the trend when testing for a unit root. The fact that the
null of a unit root is more easily rejected with one break point than with two supports
the hypothesis of stationary fluctuations around a trend with a major shift in the year
2002.

12.4.6 Implications for commodity risk management

In the light of our analysis, a possible model for the logarithm y, of the spot price of a
commodity is:
e =d; +uy

Uy = oiy—1 + vy
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Figure 12.6 WTI fit with one break point
Dotted line: OLS fit with one break point estimated by minimization of squared residuals; solid line:
OLS fit with one break point estimated by the GLS-based unit root test.
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Figure 12.7 Dotted lines: OLS fit with two break points estimated by minimization of squared
residuals; solid line: OLS fit with two break points estimated by the GLS-based unit root test.
Left: WTI crude oil; Right: Baltic Dry Index



Mean-Reversion and Structural Breaks in Crude Oil, Copper, and Shipping 203

where o < lv, is a noise process and d; is a stochastic trend subject to level and slope
shifts, occurring at random times 7;:
di=pn+pt+J;
Nt
Ji = Z[MiDUt(Ti) + Bi DT (T))]

i=1

Ny = lg«.

We can assume, for instance, that the intervals T;1; — T; between the jump times T; are
independent and exponentially distributed with parameter A, hence the number N; = Z; 17,
of jumps before time t is a Poisson process with intensity A.

The level and drift discontinuities (u;) and (8;) at break dates (7;) can be modeled either
as independent and identically distributed variables with respective densities L(u) and L(B)
or as Markov processes in the spirit of Pindyck (1999).

The precise calibration of A, L(u), and L(B) is a difficult task because very few jumps
have been historically observed. They can be chosen instead from economic considerations
relative to the perceived probability of observing a structural shift in the future and the
possible direction and magnitude of this shift.

Our model is close to the one proposed in Pindyck (1999), where the log price is assumed
to randomly oscillate around a linear time trend, whose level and slope are modeled as sta-
tionary processes. The difference with our framework lies in the continuous versus discretely
shifting pattern of the trend term.

12.5 CONCLUSION

By applying new unit root tests allowing for structural breaks in the trend under both the
null and the alternative hypothesis, we have shown that, at a level of at least 10 %, the
hypothesis of an integrated noise component around a trend with one structural break could
be rejected for the WTI crude oil, copper, and shipping. By contrast, none of the standard
unit root tests allowed us to reject the null of a unit root, except during the sub-periods Jan.
1983—Jan. 1986 and Feb. 1986—Mar. 2003 in the case of the WTI. The break points detected
for the three prices under analysis correspond to well-identified events which altered the
supply/demand fundamentals.

An important extension of our paper concerns the “on-line” estimation of a structural
break, in the spirit of the filter introduced in Hamilton (1989): can the decision maker
assess at any time t the probability of the price having switched to a new regime? This
question is particularly important when looking at the paths of the WTI crude, copper, and
freight rates in 2002-2003: at what date can we know with a sufficient level of confidence
that a break occurred? This problem can for example be solved by using cutting-edge
Bayesian techniques such as Gibbs sampling (see e.g. McCulloch and Tsay (1993), where
the Gibbs sampler, introduced in Geman and Geman (1984), is applied to estimate a random
level/variance shift model on the price of unleaded gasoline in the US).

Other extensions concern the detection of breaks in mean-reversion speed and volatility
as well as seasonality.



204 Risk Management in Commodity Markets

12.6 REFERENCES

Ardeni, P. (1989). Does the Law of One Price Really Hold for Commodity Prices? American Journal
of Agricultural Prices 71, 661-669.

Babula, R.A., F.J. Ruppel and D.A. Bessler (1995). US Corn Exports: the Role of the Exchange Rate.
Agricultural Economics 13, 75-88.

Bai, J. and P. Perron (2003). Computation and Analysis of Multiple Structural Change Models. Journal
of Applied Econometrics 18, 1-22.

Bessembinder, H., J. Coughenour, P. Seguin and M. Smoller (1995). Mean Reversion in Equilibrium
Asset Prices: Evidence from the Futures Term Structure. The Journal of Finance 50(1), 361-375.

Black, F. and M. Scholes (1973). The Pricing of Options and Corporate Liabilities. Journal of Political
Economy 81(3), 637-654.

Carrion-i-Silvestre, J.L., D. Kim and P. Perron (2007). GLS-based Unit Root Tests with Multiple
Structural Breaks both under the Null and the Alternative Hypotheses. Working Paper, Boston
University.

Elliott, G., T. Rothenberg and J. Stock (1996). Efficient Tests for an Autoregressive Unit Root. Econo-
metrica 64, 813-836.

Eydeland, A. and H. Geman (1998). Pricing Power Derivatives, Risk, October.

Foster, K.A., Havenner A.M. and A.M. Walburger (1995). System Theoretic Time-Series Forecasts
for Weekly Live Cattle Prices. American Journal of Agricultural Economics 77, 1012-1023.

Geman, H. (2007). Reexamining Mean-reversion in Energy Markets: In M.C. Fu et al. (Eds) Advances
in Mathematical Finance, Birkhauser Verlag AG.

Geman, S. and D. Geman (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian Resto-
ration of images. IEEE Trans. Pattern Analysis and Machine Intelligence 6, 721-741.

Geman, H. and V. Nguyen (2005). Soybean Inventory and Forward Curve Dynamics. Management
Science 51(7), 1076—-1091.

Geman, H. and S. Ohana (2007). Forward Curves, Scarcity, and Price Volatility in Oil and Natural
Gas Markets. Working Paper, Birkbeck, University of London.

Gibson, R. and E. Schwartz (1990). Stochastic Convenience Yield and the Pricing of Oil Contingent
Claims. The Journal of Finance 45(3), 959-976.

Hall, A. (1994). Testing for a Unit Root in Time Series with Pretest Data-Based Model Selection.
Journal of Business and Economic Statistics 12, 461-470.

Hamilton, J. (1989). A New Approach to the Economic Analysis of Nonstationary Time Series and
the Business Cycle. Econometrica 57, 357-384.

Koekebakker, S., A. Roar and S. Sigbjgrn (2006). Are Spot Freight Rates Stationary? Journal of
Transport Economics and Policy 40(3), 449-472.

Lee, J. and M. Strazicich (2003). Minimum Lagrange Multiplier Unit Root Test with Two Structural
Breaks. The Review of Economics and Statistics 85, 1082—1089.

McCulloch, R. and R. Tsay (1993). Bayesian Inference and Prediction for Mean and Variance Shifts
in Autoregressive Time Series. Journal of the American Statistical Association 88(423), 968-978.

McKinnon, J. (1991). Critical Values for Cointegration Tests. In: R.F. Engle and C.W.J. Granger (Eds)
Long-Run Economic Relationships: Readings in Cointegration. New York: Oxford University Press,
266-276.

Miltersen, K. and E. Schwartz (1998). Pricing of Options on Commodity Futures with Stochastic Term
Structures of Convenience Yields and Interest Rates. Journal of Financial and Quantitative Analysis
33(1), 33-59.

Nelson, C., J. Piger, and E. Zivot (2001), Markov Regime Switching and Unit-Root Tests, Journal of
Business & Economic Statistics 19(4), pp. 404-415.

Newbold, P., T. Rayner and N. Kellard (2000). Long-Run Drift, Co-Movement and Persistence in
Real Wheat and Maize Prices. Journal of Agricultural Economics 51, 106—121.



Mean-Reversion and Structural Breaks in Crude Oil, Copper, and Shipping 205

Ng, S. and P. Perron (2001). Lag Length Selection and the Construction of Unit Root Tests with Good
Size and Power. Econometrica 69, 1519—1554.

Perron, P. (1989). The Great Crash, the Oil Price Shock and the Unit Root Hypothesis. Econometrica
57, 1361-1401.

Perron, P. (1990). Testing for a Unit Root in a Time Series with a Changing Mean. Journal of Business
and Economic Statistics 8, 153-162.

Perron, P. (2006). Dealing with Structural Breaks. In: K. Patterson and T.C. Mills (Eds) Palgrave
Handbook of Econometrics, Vol. 1: Econometric Theory Palgrave Macmillan, 278—-352.

Perron, P. and T. Yabu (2007). Testing for Shifts in Trend with an Integrated or Stationary Noise
Component. Working Paper, Boston University.

Phillips, P. and P. Perron (1988). Testing for a Unit Root in Time Series Regression. Biometrika 75,
335-346.

Pindyck, R. (1999). The Long-Run Evolution of Energy Prices. The Energy Journal 20(2), 1-27.

Schwartz, E.S. (1997). The Stochastic Behavior of Commodity Prices: Implications for Valuation and
Hedging. The Journal of Finance 52(3), 923-973.

Serletis, A. (1992). Unit Root Behavior in Energy Futures Prices. The Energy Journal 2(13), 119-128.

Simmons, M. (2005). Twilight in the Desert: The Coming Sandi Oil Shock and the World Economy.
John Wiley & Sons Ltd.: Chichester.

Tomek, W. and Wang D. (2007). Commodity Prices and Unit Root Tests. American Journal of Agri-
cultural Economics 89(4), 873—889.

Zivot, E. and D. Andrews (1992). Further Evidence on the Great Crash, the Oil Price Shock and the
Unit Root Hypothesis. Journal of Business and Economic Statistics 10, 251-270.






13
Managing Agricultural Price
*
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13.1 THE LIBERALIZATION CONTEXT

Agricultural commodity prices are volatile because short term production and consumption
elasticities are low. Production responsiveness is low for annual crop commodities because
planting decisions are made before prices for the new crop are known. These decisions
depend on expected prices and not price realizations. Price outcomes are seldom so disas-
trous as to result in the harvest being abandoned. For tree crop commodities, production
responsiveness is low because the stock of productive trees takes between two and five
years to respond to price increases, because input application generally gives only a modest
increase in yield and because prices are seldom so low as to make it worthwhile to cut
down trees which still have a productive future. Short-term demand elasticities are low
because the actual commodity price will seldom be a large component of the overall value
of the final product (examples are cocoa in chocolate and coffee beans in soluble coffee
powder — see Gilbert, 2007a) and because substitutability between different raw materials
is seldom large. Elasticities may be higher for subsistence crops in poor economies where
high prices may force families to try to get by on less.

Throughout the twentieth century, the variability of agricultural prices induced both devel-
oped and developing country governments to seek to prevent or offset these movements. By
the 1980s unilateral and multilateral interventions in agricultural commodity markets had
become the norm. The United States used support prices and inventories to manage domestic
prices. The EU had a similar scheme, but also operated a special set of commodity-specific
exchange rates (“green rates”) for trade among EU members. For those commodities pro-
duced predominantly in developing countries, interventions were either multilateral, for
example through buffer stock or export control agreements under the auspices of interna-
tional commodity agreements (cocoa, coffee, natural rubber and sugar — see Gilbert, 1987,
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1996) or through domestic agencies. Marketing boards and stabilization funds were common
in both developed and developing countries. There were buffer stock schemes in Bangladesh,
India, Indonesia, Mexico, the Philippines and South Korea; buffer funds in Céte d’Ivoire,
Papua New Guinea, and South Korea; marketing boards with monopolies on trade in much of
Africa and parts of Latin America and Asia; and variable tariff schemes in Chile, Malaysia,
and Venezuela (Knudsen and Nash, 1990).

Many of the developing country schemes (national and multinational) encountered seri-
ous problems during the 1980s. Producers and producing country governments became
over-optimistic about the prices they could obtain in what were generally weak market con-
ditions. At the same time, the inefficiency costs associated with controls became higher over
time as rent-seeking activities became increasingly entrenched. In coffee, high prices induced
expansion of area in a number of countries with relatively high production costs (mainly in
Africa), while quota restrictions held down production in lower-cost origins such as Brazil.
Marketing board bureaucracies, such as the Instituto Brasiliero do Café in Brazil and Coco-
bod in Ghana, multiplied in size and absorbed much of the benefit of higher prices, and other
forms of rent extraction were established (Bohman et al., 1996). The consequence was that,
as prices weakened through the 1980s, almost all previously successful national intervention
schemes succumbed to financial difficulties. In turn, the international commodity agreements
were unable to adapt to changes in the market, and by 1996 the economic clauses in them
had all lapsed or failed, victims of politics and economics (Gilbert, 1987, 1996).

In many cases, donors were called upon to rescue or restructure national stabilization
agencies of funds which found themselves in distress. Market liberalization, in particular
the abolition of monopsony-monopoly marketing arrangements and radical reduction in
the size of bureaucracies, was often a precondition for such assistance. Thus, a series of
reforms aimed at liberalizing developing country agricultural markets was launched in the
1980s and 1990s, largely at the urging of multilateral lenders such as the European Union,
USAID, and the World Bank. Akiyama et al. (2001) illustrate the rapid pace of these reforms
for Africa. With only a few exceptions, marketing boards and stabilization agencies were
either abolished or restructured so that their activities were confined to those of general
oversight, regulation and collection and dissemination of market data. A major objective
of the liberalization policies was to ensure that farmers received a higher share of world
prices. National and regional monopsonies were largely abolished (an exception being cotton
through francophone West and Central Africa) and pan-national pricing was dropped. At the
same time, export taxes tended to be reduced. Many of these changes encountered strong
opposition from market incumbents and entrenched governmental interest groups.

As a consequence, since the mid-1990s agricultural products in developing countries
have been produced and marketed under much more competitive conditions than at any
time since (or during) the colonial period. Lower taxation and greater competition in the
supply chain have helped farmers achieve higher shares of world prices, and the price
pass-through process has become faster. On the negative side, liberalization may also have
resulted in lower world prices, to the benefit of consumers rather than producers (see Gilbert
and Varangis, 2004), and more rapid pass-through has resulted in more variable producer
(farmgate) prices. This has been particularly true in Africa, where markets had previously
been highly controlled, and also to a large extent in Latin America. It has been less true in
central Asia where important prices remain controlled by government.

More complete and more rapid pass-through of world to farmgate prices has increased the
exposure of developing country farmers and supply chain intermediaries to price variability.



Managing Agricultural Price Risk in Developing Countries 209

This was an unintended consequence of market liberalization (sometimes referred to as a
“second generation problem”) which has had particularly serious implications in developing
countries where banks often have poor outreach to the agricultural sector, financial markets
are poorly developed and access to international markets is limited. Management of this
risk becomes a problem and is the focus of this contribution. For previous literature see
Claessens and Duncan (1993), ITF (1999), and Gilbert (2002).

In the developed “market” economies, change has been less marked, particularly where
agriculture remains largely protected. Farmers in the United States, the EU, Japan and
many other developed economies continue to receive prices well above world market levels.
Because much of this support is delivered through price guarantees, the gap is particularly
large in periods when world prices are low. High prices are therefore passed through to
developed country farmers who nevertheless still remain partially insulated from low world
prices.

Section 13.2 discusses price exposure in the developing country agricultural supply chain.
Section 13.3 looks at the available risk management instruments, and the challenges to which
they give rise. Section 13.4 discusses application of these instruments in the developing
country context. Section 13.5 concludes.

13.2 INCIDENCE OF RISK EXPOSURE

Agents in the agricultural value chain are exposed but to differing extents and to differing
risks. In this chapter, we will be concerned predominantly with price risk. However, it is
important to emphasize that this is not the only, and not necessarily the most important,
risk faced by market actors. For many agricultural commodities, weather-related quantity
risk may be problematic. For exporters in developing countries, political risk — in particular
risks associated with the availability and terms of export permits — may be dominant.
For exporters and banks, currency risks can be quite serious, as has been demonstrated
most recently in countries such as Zambia and Tanzania which have experienced currency
appreciation relative to the US dollar to the detriment of exporters selling commodities
in US dollar terms. The justification for compartmentalizing risk into different categories
(price, yield, political, currency, etc.) and analyzing these separately is that agents need to
adopt different strategies to manage different types of risk.

13.2.1 Farmers

Taking a simple example of price risk in the coffee supply chain, we start with farmers, who
are naturally “long” the crop. They benefit when prices rise and lose when they fall. Because
intermediation costs are largely independent of the price level and because export and other
taxes are normally constant in absolute rather than in percentage terms, price variations at
the fob stage are attenuated at the farmgate level. Farmers obtain the residual of the price
after all other agents in the value chain have taken their cut. As an example, suppose the fob
price of a commodity is $1/kg and price variability measured as the coefficient of variation is
15 %, so that a one standard deviation price movement is 15c/kg. If intermediation costs are
50c/kg and are constant, the same 15c/kg price movement amounts to a farmgate coefficient
of variation of 30 %.

Farmers are primarily interested in net revenues. Net revenues are gross revenues less
production costs. Gross revenues are based on price multiplied by quantity (yield), and both
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Figure 13.1 The coffee supply chain
Source: Gilbert (2007a).

are subject to volatility. Variation in these may be partially offset if, for example, adverse
weather affects many producers at the same time (as, for example, in the possible effects
of El Nifio). In such a case, the farmer is somewhat self-insured since although yield has
decreased, prices have increased. This situation, however, is exceptional and in a competitive
market with geographically dispersed production it is more plausible that yield and price
risk are uncorrelated.

We can identify two sets of impacts resulting from farmgate price variability. First,
revenue variability is likely to transfer into variability of consumption, and also investment,
including investment in new technologies. Second, price uncertainty will lead farmers to be
cautious in the application of costly inputs and this will tend to reduce yields.

First, consider the impact on consumption and investment. Farmers in developed
economies, and possibly also the richer farmers in developing countries, can smooth con-
sumption by saving and dissaving to maintain consumption equal to permanent income.
Farmers in developing countries typically have low or zero savings and little collateral. The
rural areas of many developing countries are virtually unbanked and this inhibits the accumu-
lation of savings in good times. Even if farm households have managed to save in the form
of agricultural capital, e.g. animals, it may be difficult to realize these savings in the event of
an adverse shock which affects the entire community. In such circumstances adverse price
or yield shocks will force poorer farmers to adopt other strategies. These include reduction
of consumption but also, in countries where other labor market opportunities are available,
one or more family members taking an additional off-farm job or even migrating. In both
cases, this may involve withdrawal of a child from school resulting in an irreversible loss
of potential human capital (Duryea et al., 2007). See also Section 13.4.7 below.

Periods of low prices can therefore impose substantial utility costs on developing country
farmers. Because adverse shocks are likely to impact investment as well as consumption,
these effects can be long term and can endure after prices have recovered (Raddatz, 2005).
The irreversibility of investment decisions implies that the effects may be asymmetric
between positive and negative shocks and may be permanent (Collier, 2005).

We now turn to the cost side of the equation. Production costs comprise capital, labor and
input (fertilizer, insecticide, etc.) costs. The balance between these varies from one crop to
another. Some costs, particularly labor costs, depend on the quantity harvested. Other costs,
particularly input costs, are incurred earlier in the crop year and, in the case of annual crops,
at the time of planting. Short-term supply responsiveness arises out of the ability of farmers
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to adjust input decisions in relation to their expectations of likely prices. Risk aversion will
lead farmers to reduce inputs to the extent that harvest prices are subject to uncertainty.
Price uncertainty therefore tends to reduce yields and hence revenues.

The importance of these yield impacts varies from commodity to commodity. In general,
we should expect the effects to be highest for annual crops where planting decisions can be
very sensitive to expected prices. It is relatively easy, for example, for farmers to substitute
between alternative grains. For other crops, such as cotton, which are typically highly
fertilizer-intensive, the crucial decision is how much fertilizer to apply (and hence purchase).
For tree crops, such as cocoa and coffee, yield responsiveness will depend on the extent
to which production is input-intensive. Fertilizer is used in only modest quantities in cocoa
production but insecticide application can be important. The fertilizer-intensity of coffee
production varies from region to region but modern, fast-growing varieties tend to require
more fertilizer than traditional trees.

Farmers therefore face two distinct price risk problems. The first relates to price uncer-
tainty over the crop year: farmers commit time and material inputs based on their expec-
tations at the start of the crop year. If prices turn out lower than they expected, they may
fail to cover input costs, while if they are higher, they will have failed to take advan-
tage of market opportunities. Managing this price risk can increase productive efficiency
and, in the case of sharp price falls, protect against the risk of financial loss. The second
problem is that of sustained low prices. Such periods typically result from global excess
supply and, if they persist over a number of years, may not involve significant intra-annual
uncertainty — indeed, prices are often less volatile when they are low. Prolonged periods of
low prices undermine livelihoods. This is an income maintenance issue and not a risk man-
agement issue. The balance in importance between these two factors varies from commodity
to commodity depending on the extent of discretion in input decisions and the length and
amplitude of price cycles.

13.2.2 Intermediaries, exporters, stockholders, and banks

Intermediaries buy from farmers and sell either to exporters or to other intermediaries. They
include low level traders and traitants, who tour producing areas with trucks and purchase
from farmers, producer groups, cooperatives, intermediate aggregators such as transport
companies, and intermediate processors such as cotton ginners, millers, etc. The common
feature across all market intermedi